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Introduction

Reverse engineering and software cracking are disciplines with a long, rich 
history. For decades, software developers have attempted to build defenses 
into their applications to protect intellectual property or to prevent modifi-
cations to the program code. The art of cracking has been around nearly as 
long as reverse engineers have been examining and modifying code for fun 
or profit.

Before diving into the details of how reverse engineering works, it is useful to 
understand the context in which these disciplines reside. This chapter describes 
what to expect from this book and dives into the history and legal considerations 
of software reverse engineering and cracking.

Who Should Read This Book

From security professionals to hobbyists, this book is for anyone who wants 
to learn to take apart, understand, and modify black- box software. This book 
takes a curious security- minded individual behind the curtain to how software 
cracking and computers work. Learning how an x86 computer works is not only 
powerful from a reverse- engineering and cracking perspective, but will make 
each reader a stronger developer, with advanced knowledge they can apply to 
code optimization, efficiency, debugging, compiler settings and chip selection. 
Then the curtain continues to pull back as readers learn how software cracking 
happens. Readers will learn about tools and techniques that real- world software 
crackers use, and they will set their newfound knowledge to the test by cracking 
real- world applications of their own in numerous hands- on labs. We then circle 
back to understand defensive techniques for combating software cracking.  
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By learning both the offensive and defensive techniques, readers will walk away 
as strong software crackers or software defenders.

What to Expect from This Book

This book is based on these three core tenets of reverse engineering:

 ■ There is no such thing as uncrackable software.

 ■ The goal in offense is to try to go faster.

 ■ The goal in defense is to try to slow down.

Based on this philosophy, any software can be reverse engineered and have 
its secrets stolen and protections circumvented. It’s just a matter of time.

Like other areas of cybersecurity, both offensive and defensive reverse engi-
neers benefit from having a similar set of skills. This book is designed to provide 
an introduction to these three interrelated skill sets:

 ■ Reverse engineering: Reverse engineering is the process of taking soft-
ware apart and figuring out how it works.

 ■ Cracking: Cracking builds on reverse engineering by manipulating a 
program’s internals to get it to do something that it was not intended to.

 ■ Defense: While all software is crackable, defenses can make a program 
more difficult and time- consuming to crack.

Both offensive and defensive reverse engineers benefit from the same set 
of skills. Without an understanding of reverse engineering and cracking, a 
defender can’t craft effective protections. On the other hand, an attacker can 
more effectively bypass and overcome these protections if they can understand 
and manipulate how a program works.

Structure of the Book
This book is organized based on these three core capabilities and skill sets. The 
structure is as follows:

PART TOPICS GOAL

Part 1: Background History and legal considerations

x86 crash course

Understand x86 and learn 
to move quickly.
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PART TOPICS GOAL

Part 2: Software 
Reverse Engineering

Reconnaissance

Key checkers

Key generators

Process monitoring

Resource manipulation

Static analysis

Dynamic analysis

Writing key gens

Cracking software

Master the tools, 
approaches, and mindset 
required to take software 
apart and understand its 
inner workings.

Part 3: Software 
Cracking

Manual patching

Automated patchers

Advanced dynamic analysis

Execution tracing

Advanced static analysis

Trial periods

Nag screens

More key gens

More cracks

Master the tools, 
approaches, and mindset 
necessary to isolate 
behavior and modify 
software.

Part 4: Defenses, 
Countermeasures, and 
Advanced Topics

Obfuscation/deobfuscation

Anti- debugging/
anti- anti- debugging

Packing/unpacking

Cryptors/decryptors

Architectural defenses

Legal

Timeless debugging

Binary instrumentation

Intermediate representations

Decompiling

Automatic structure recovery

Visualization

Theorem provers

Symbolic analysis

Cracking extravaganza

Master defenses and 
counter- defenses.

Evaluate defensive posture 
and tradeoffs.

Explore advanced topics.

Exercise reverse 
engineering and cracking 
tools, techniques, and 
mindset.
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Hands- On Experience and Labs
The best way to learn reverse engineering and software cracking is by doing it. 
For this reason, this book will include several hands- on labs that demonstrate 
the concepts described in the text.

The goal of this book isn’t to teach a particular set of tools and techniques. 
While the focus is on x86 software running in Windows, many of the approaches 
and techniques will translate to other platforms. This book will attempt to dem-
onstrate a wide range of tools, including open- source, freeware, shareware, 
and commercial solutions. With an understanding of what tools are available 
and their relative strengths and weaknesses, you can more effectively select the 
right tool for the job.

Hands- on labs and exercises will also focus on reverse engineering and cracking 
a variety of different targets, including the following:

 ■ Real software: Some exercises will use real- world software carefully 
selected to avoid copyright violations.

 ■ Manufactured examples: Software written specifically for this book to illus-
trate concepts that are impractical to demonstrate with real- world examples.

 ■ Crackmes: Manufactured software developed by crackers to illustrate a 
concept or challenge others.

Companion Download Files
The book mentions some additional files, such as labs or tools. These items 
are available for download from https://github.com/DazzleCatDuo/ 
X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES.

History

Before diving into the nitty- gritty details of cracking and reverse engineering, 
it is useful to understand its history. Software protections and the tricks and 
techniques used to overcome them have been evolving for decades.

The First Software Protections
The first software copy protections emerged in the 1970s. Some of the early 
movers in the space were as follows:

 ■ Apple II: The Apple II incorporated proprietary disk drivers that would 
allow writing at half- tracks, writing extra rings, and staggering and over-
lapping sectors. The purpose of this was to make the disks unusable by 
non- Apple machines and software that wouldn’t know to read and write 
at these odd offsets.

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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 ■ Atari 800: Atari 800 systems would intentionally include bad sectors in 
their disks and attempt to load these sectors. If these loads didn’t return 
a “bad sector” error, then the software knew it wasn’t a valid disk and 
would halt execution.

 ■ Commodore 64: Legitimate Commodore 64 software was distributed only 
on read- only disks. The software would attempt to overwrite the disk, 
and, if it succeeded, it knew the disk was counterfeit.

These protections all depended on unusual behavior by the software, such 
as the use of invalid memory or attempting to overwrite the program’s own 
code. Defeating these protections required an understanding of how the soft-
ware worked.

The Rise of Cracking and Reverse Engineering
The rise of cracking and reverse engineering began in the 1980s. However, these 
early crackers weren’t in it for the money. Cracking was a contest to determine 
who could figure out and bypass software protections the quickest.

Over the next several decades, the reverse engineering and cracking scene 
evolved. These are some of the key dates in the history of reverse engineering:

1987: Fairlight’s formation in 1987 by Bacchus defines one of the first operational 
groups. Fairlight will later come to prominence in FBI crackdowns of the 
early 2000s. For more historic details visit www.fairlight.to and csdb.dk.

1990: Elliot J. Chikofsky and James H. Cross II defined reverse engineering 
as “the process of analyzing a subject system to identify the system’s 
components and their interrelationships and to create representations of 
the system in another form or at a higher level of abstraction. (“Reverse 
Engineering and Design Recovery: A Taxonomy.” IEEE Software, Vol. 7, 
Issue 1, Jan 1990).

1997: Old Red Cracker (handle +ORC) founds the Internet- based High Cracking 
University (+HCU) to allow everyone to learn about cracking. +ORC 
released “how to crack” lessons online and authored academic papers. 
+HCU students had handles that began with an +.

1997–2009: The “warez scene” emerges with groups competing to be the first 
to release copyrighted material. Insiders (aka “suppliers”) provided early 
access to their groups, “crackers” broke the protections, and “couriers” 
distributed cracked software to FTP sites. Between 2003 and 2009, approx-
imately 3,164 active groups were on “the scene”, competing primarily for 
pride and bragging rights, not money.

2004: The FBI and other countries begin raids against “the scene”. Operation 
Fastlink (2004) led to the conviction of 60 warez members, and Operation 
Site Down (2005) took down 25 warez groups.

http://www.fairlight.to
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The arms race between software protections and crackers continues to rage, 
and reverse engineering is an invaluable skill set on both sides. Crackers need 
to understand how a program works to manipulate it and bypass defenses. On 
the defensive side, it’s important to understand the latest cracking techniques 
to develop defenses that protect intellectual property and other sensitive data.

Legal

The best way to learn is by doing. This is why this book includes labs and exer-
cises with real- world software as well as manufactured examples and crackmes. 
We are not lawyers, and those with concerns should consult a lawyer. We recom-
mend the Electronic Frontier Foundation (www.eff.org). Chapter 15 covers legal 
topics because we feel it’s important for everyone to understand the US- based 
laws that affect this area. There are two main laws to be aware of: the Copyright 
Act and the Digital Millennium Copyright Act (DMCA).

The Fair Use Clause of the Copyright Act (Copyright Act, 17 U.S.C. § 107) states 
that reverse engineering falls under “fair use” when done for “. . .purposes such 
as criticism, comment, news reporting, teaching (including multiple copies for 
classroom use), scholarship, or research. . ..” This exception is balanced against 
“the effect of the use upon the potential market for or value of the copyrighted 
work.” In essence, reverse engineering used for educational purposes is legal 
if you don’t share or sell the cracked software.

In October 2016, the DMCA also added an exception for good faith security 
research. It states, “accessing a computer program solely for purposes of good- 
faith testing, . . .where such activity is carried out in a controlled environment 
designed to avoid any harm to individuals or the public, . . .and is not used or 
maintained in a manner that facilitates copyright infringement.”

The software examined in this book and used in exercises was carefully 
selected to fall under the fair use and DMCA exceptions. If you are planning 
to reverse engineer and crack software for anything other than self- education, 
you should consult a lawyer. The legal considerations of reverse engineering 
will also be explored in greater detail in a later chapter.

Software reverse engineering and cracking have a rich history, and this skill 
set has both offensive and defensive applications. However, it is important to 
understand the laws around these disciplines and ensure that your activities 
fall under the good- faith testing and fair use exemptions.

This book is designed to provide a strong foundation in the skills and tools 
used for software reverse engineering and cracking. Beginning with the fun-
damentals, the book will move on through sections on software reverse engi-
neering and cracking to end with an exploration of advanced offensive and 
defensive techniques.

http://www.eff.org
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C H A P T E R

1

1

An effective reverse engineer or cracker is one who understands the systems 
they are analyzing. Software is designed to run in a particular environment, 
and if you don’t understand how that environment works, you will struggle 
to understand the software.

This chapter explores the steps necessary to get started reverse engineering 
an application. Decompilation is crucial to transforming an application from 
machine code to something that can be read and understood by humans. To actu-
ally analyze the resulting code, it is also necessary to understand the architecture 
of the computers that it is designed to run on.

Decompilation

Most programmers write using a higher- level programming language like  
C/C++ or Java, which is designed to be human- readable. However, computers 
are designed to run machine code, which represents instructions in binary.

Compilation is the process of converting a programming language to machine 
code. This means decompilation would be the process of taking machine code 
back to the original programming language, recovering the original source code. 
When available, this is the easiest approach to reverse engineering because source 
code is designed to be read and interpreted by a human. The majority of this 

Decompilation and Architecture
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book will focus on the more typical case when decompilation is not possible. 
But for the purposes of learning, it is important to understand that sometimes 
you can decompile back to the source code, and when that is an option, you 
should take it.

When Is Decompilation Useful?
For many programming languages, full decompilation is impossible. These 
languages build code directly to machine code, and some information, such as 
variable names, is lost in the process. While some advanced decompilers can 
build pseudocode for these languages, the process isn’t perfect.

However, some programming languages use what’s called just- in- time (JIT) 
compilation. When programs written in JIT languages are “built,” they are con-
verted from the source code into an intermediate language (IL), not machine code. 
JIT compilers store a copy of the code in this IL until the program is run, at 
which point the code is converted to machine code. Examples of JIT languages 
include Java, Dalvik (Android), and .NET.

For example, Java is well- known for being largely platform- agnostic, and the 
reason for this is its use of an IL (Java bytecode) and the Java Virtual Machine 
(JVM). By distributing the program code as bytecode and compiling it only at 
runtime, Java’s JVM translates from the Java IL to machine code specific to the 
machine it’s running on. While this approach can negatively impact file size 
and performance, it pays off in portability.

JIT compilation also makes reverse engineering these applications much 
easier. These intermediate languages are similar enough to the original source 
code that they can be decompiled or converted back into usable source 
code. Source code is designed to be human- readable, making it far easier to 
understand the application’s logic and identify software protections or other 
embedded secrets.

Decompiling JIT Programming Languages
For JIT languages like .NET, several free decompilers are available. One widely 
used .NET decompiler is JetBrains dotPeek, which is available from www.jet 
brains.com/decompiler. Figure 1.1 shows an example of .NET code decompiled 
in dotPeek.

As shown in the figure, the .NET code is easily readable after decompilation 
because the intermediate language encodes a wealth of information as meta-
data, enabling more accurate reconstruction of the source code. Any sensitive 
information or trade secrets contained within the code are easily accessible to 
a reverse engineer.

https://www.jetbrains.com/decompiler
https://www.jetbrains.com/decompiler
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Defending JIT Languages
Unlike true machine code programs, JIT- compiled programs can often be con-
verted to source code. Lowering the bar for reverse engineering the code makes 
many of the x86 anti- reverse engineering defenses discussed in later chapters 
unnecessary and overkill.

For decompilable languages, a commonly used defense against reverse engi-
neering is obfuscation. Figure 1.2 shows an example of a .NET application before 
and after obfuscation.

The top half of the figure contains code before obfuscation occurs, where the 
function and variable names and strings are easily readable. The information 
in these variable names makes it easier for a reverse engineer to understand the 
purpose of each function and how the application works as a whole.

In the bottom half of the image, we see the obfuscated version of the same 
code. Now, function names, variable names, and strings are all mangled, mak-
ing it much harder to understand the purpose of the function shown, let alone 
the application as a whole.

Another important security best practice is to avoid writing security or privacy- 
critical code in JIT languages where reverse engineering is easy. Instead, write 

Figure 1.1: JetBrains dotPeek .NET decompiler
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this code in an assembled language, such as C/C++, where reverse engineering 
is significantly more difficult. This code can be included in DLLs that are linked 
to the executable containing the nonsensitive code written in a JIT language.

Lab 1: Decompiling

This is the first hands- on lab for this book. Labs and all associated instructions 
can be found in their corresponding folder here:

https://github.com/DazzleCatDuo/X86- SOFTWARE- REVERSE- ENGINEERING- 

CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab Decompiling and follow the provided instructions.

Skills to Practice
Every lab in this book is designed to teach and provide hands- on experience 
with certain skills. This lab’s skills to practice include the following:

 ■ Decompiling

 ■ Performing introductory reverse engineering

To learn these skills, you’ll be using JetBrains dotPeek to reverse engineer 
and modify a .NET application.

Figure 1.2: Obfuscation in JetBrains dotPeek

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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Takeaways
Decompiling is a powerful and easy approach to understanding and modifying 
a program. However, it doesn’t work on every program. While programs written 
in languages such as C/C++ can be decompiled using tools such as IDA’s Hex- 
Rays Decompiler or Ghidra, the result is often low- quality and difficult to use.

When developing applications that contain sensitive information or that you 
don’t want modified, it’s better to use a language that isn’t easily decompiled. 
For example, C/C++ is a better choice for sensitive functionality than a .NET 
language such as C#.

Architecture

Decompilation is the easy approach to reverse engineering because it gets you back 
to higher- level languages and logic structures. However, this easy path is not often 
available. For languages that build to machine code, we need to go deeper and 
understand how computer architectures and machine and assembly code work.

Computer Architecture
It’s generally thought that the average programmer doesn’t need an in- depth 
understanding of how computers work. When writing a program in a proce-
dural language, the operating system handles all of the low- level operations. A 
program is displayed as a process that has access to the processor, memory, and 
file system whenever it needs them. Processes appear to have their own contig-
uous memory spaces, and files are just a sequence of bytes to read and write.

However, none of this is actually true, and your operating system has been 
abstracting the truth from you (to make it easier to program). A solid under-
standing of how computer architecture actually works is essential for a reverse 
engineer. Figure 1.3 shows the main components that make up a computer, 
including the central processing unit, bridge, memory, and peripherals.

System
Bus

Memory
Bus

Bridge

I/O Bus

Memory 

Peripheral 

CPU

ALU

Registers

Control Unit

Peripheral Peripheral 

Figure 1.3: Computer architecture
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The Central Processing Unit

The central processing unit (CPU) is where processing occurs on a computer. 
Inside the CPU are the following components:

 ■ Arithmetic logic unit (ALU): The ALU performs mathematical operations 
within the computer, such as addition and multiplication.

 ■ Registers: Registers perform temporary data storage and are used as 
the primary inputs and outputs of x86 instructions. Registers provide 
extremely fast access to a single word of data and are typically accessed 
by name.

 ■ Control units: Control units execute code. This includes reading instruc-
tions and orchestrating the operations of other elements within a computer.

Bridges and Peripherals

The CPU is connected via a bus to a bridge. The purpose of the bridge is to con-
nect the CPU to other components of the system, including memory and the 
I/O bus, which is where peripherals such as the keyboard, mouse, and speakers 
are connected to the system. While information flows over a bus, the bridge is 
responsible for controlling this traffic and ensuring that traffic flowing in over 
one bus is routed out over the appropriate bus.

Peripherals, connected via the I/O bus, allow the computer to communicate 
with the outside world. This includes sending and receiving data from the 
graphics card, keyboard, mouse, speakers, and other systems.

Memory and Registers

As its name suggests, memory is where data is stored on the computer. Data is 
stored as a linear series of bytes that are accessed via their address. This design 
allows moderately fast access to data stored on the system.

When a program wants to access data in memory, the CPU sends a request 
via a bus to the bridge, which forwards it to the memory, where the data at the 
indicated address is accessed. The requested data then needs to retrace that 
route and return to the CPU before it can be used by the program. In contrast, 
a register is physically located within the CPU, making it far more accessible.

Registers are storage that lives inside of the CPU and, unlike memory, are 
not a linear series of bytes. Registers are specifically named and have set sizes 
associated with each.

Registers and memory both serve the same purpose: they store data. How-
ever, they have different specializations (quality versus quantity). Registers are 
few in number and expensive, but they provide extremely fast access to data. 
Memory is cheap and plentiful but offers slower access speeds.
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The bulk of the data associated with a program, the code itself and its data, 
will be stored in memory. While the program is running, small chunks of  
data will be copied to the registers for processing.

Assembly
Computers run on binary, digital logic. Everything is either on (1) or off (0). This 
includes programs running on a computer. All high- level languages are eventu-
ally converted into a series of bits called machine code. This machine code defines 
the set of instructions that the computer executes to perform a desired function.

Introduction to Machine Code

Every programmer begins learning a language with a “hello world” program. 
In x86, the machine code for “hello world” is as follows:

55 89 e5 83 e4 f0 83 ec 10 b8 b0 84 04 08 89 04 24 e8 1a ff ff ff b8 00 
00 00 00 c9 c3 90

This machine code is written in hexadecimal for readability and compact-
ness, but its true value is a binary string of 1s and 0s. This binary string contains 
instructions to flip transistors to calculate information, fetch data from memory, 
send signals over the system buses, interact with the graphics card, and, finally, 
print out the “hello world” text. If this string of characters seems a bit short to 
accomplish all this, it’s because these instructions trigger the operating system 
(in this example Linux) to help out.

Machine code controls the processor at the most detailed possible level. Some 
of the functions that machine code performs include the following:

 ■ Moving data in and out of memory

 ■ Moving data to and out of registers

 ■ Controlling the system bus

 ■ Controlling the ALU, control unit, and other components

This low- level control means that applications written in machine code can 
be incredibly powerful and efficient. However, while memorizing and inputting 
various series of bits to perform certain tasks is pretty awesome, it is inefficient 
and prone to error.

From Machine Code to Assembly

In machine code, a series of bits represents a particular action. For example, 
0x81 or 10000001 is an instruction that adds two values together and stores the 
result at a particular location.
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Assembly code is designed to be a human- readable version of machine code. 
Instead of memorizing a binary or hexadecimal string like 0x81 or 10000001, a 
programmer can use add. The add mnemonic is mapped to 0x81, so this short-
hand makes programming easier without losing any of the benefits of writing 
in machine code.

Translating machine code to assembly code makes it much easier to under-
stand. For example, the previous “hello world” example code can be converted 
into a series of comprehensible instructions.

MACHINE CODE ASSEMBLY

55 push ebp

89 e5 mov ebp,esp

83 e4 f0 and esp, 0xfffffff0

83 ec 10 sub esp, 0x10

b8 b0 84 04 08 mov eax

89 04 24 mov [esp], eax

e8 1a ff ff ff call 80482f4

b8 00 00 00 00 mov eax, 0x0

c9 leave

c3 ret

90 nop

If you understand machine code, writing directly in it can be fun, and there 
are cases where it may make sense. However, the majority of the time, it is 
inefficient and impractical. Writing in assembly provides the same benefits as 
writing in machine code but is much more practical.

After code has been written in assembly, it can be translated to machine code 
by an assembler in a process called assembling. A program already in machine 
code can be disassembled into assembly code by a disassembler.

DEFINITION

Assemblers convert assembly code to machine code. Disassemblers convert machine 
code to assembly.

Many programmers don’t write in machine code or assembly. Instead, they 
use higher- level languages that abstract away more of the details. For example, 
the following pseudocode is similar to many high- level procedural languages.

int x=1, y=2, z=x+y;
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During the compiling process, these higher- level languages are converted 
into assembly code similar to the following:

mov   [ebp- 4], 0x1
mov   [ebp- 8], 0x2
mov   eax, [ebp- 8]
mov   edx, [ebp- 4]
lea   eax, [edx+1*eax]
mov   [ebp- 0xc], eax  

An assembler can then be used to convert the assembly code into the follow-
ing machine code that a computer can use:

c7 45 fc 01 00 00 00 c7 45 f8 02 00 00 00 8b 45 f8 8b 55 fc 8d 04 02 
89 45 f4

Instruction Set Architectures and Microarchitectures

The word computer covers a wide range of systems. A smartwatch and a desktop 
computer both work in similar ways. However, their internal components can 
differ significantly.

An instruction set architecture (ISA) describes the ecosystems where programs 
run. Some of the factors that an ISA defines include the following:

 ■ Registers: The ISA specifies whether a processor has a single register or 
hundreds. It also defines the size of these registers, whether they contain 
8 bits or 128 bits.

 ■ Addresses and data formats: The ISA specifies the format for addresses 
used to access data in memory. It also defines how many bytes the system 
can grab from memory at a time.

 ■ Machine instructions: Different ISAs may support different sets of instruc-
tions. The ISA defines whether addition, subtraction, equality, halt, and 
other instructions are supported.

By defining the capabilities of the physical system, the ISA also indirectly 
defines the assembly language. The ISA specifies which low- level instructions 
are available and what those instructions do.

A microarchitecture describes how a particular ISA is implemented on a pro-
cessor. Figure 1.4 shows an example of the Intel Core 2 architecture.

Together, an ISA and microarchitecture define the computer architecture. The 
existence of thousands of ISA and thousands of microarchitectures means that 
there are thousands of computer architectures as well.
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DEFINITION

An instruction set architecture defines how registers, addresses, data formats, and 
machine instructions work. Microarchitectures implement ISAs on a processor. 
Together, an ISA and microarchitecture define a computer architecture.

RISC vs. CISC Computer Architectures

While thousands of computer architectures exist, they can be broadly divided 
into two main categories. Reduced instruction set computing (RISC) architectures 
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define a small number of simpler instructions. In general, RISC architectures 
are cheaper and easier to create, and the hardware is physically smaller and 
consumes less power.

In contrast, a complex instruction set computing (CISC) architecture defines a 
larger number of more powerful instructions. CISC processors are more expen-
sive and difficult to create and are typically larger and consume more power.

While CISC architectures may seem objectively worse than RISC ones, their 
main benefit lies in the ease and efficiency of programming. For example, con-
sider a hypothetical example where a program wants to multiply a value by 
5 in a RISC versus CISC system.

CISC RISC

mul [100], 5 load r0, 100

mov r1, r0

add r1, r0

add r1, r0

add r1, r0

add r1, r0

mov [100], r1

In this example, a CISC processor can perform the calculation in a single 
instruction if it has a multiplication operation that can load a value from 
memory, multiply it, and store the result at the same memory location. How-
ever, a RISC processor may lack a multiplication operator because it is a 
complex operation. Instead, the RISC loads the value from memory, adds it 
to itself four times, and stores the result in the same memory location across 
seven steps.

RISC and CISC architectures both have their advantages, disadvantages, and 
use cases. For example, a RISC operator may take 100 instructions to perform the 
same operation that a CISC operator can perform in one. However, that single 
CISC operation may take 100× as long to run or 100× the power.

Both RISC and CISC instruction sets are in common use today. Some exam-
ples of widely used RISC architectures include the following:

 ■ ARM (used by phones, tablets)

 ■ MIPS (used by embedded systems and networking equipment)

 ■ PowerPC (used by original Macs and Xbox360)

In this book, we focus on the x86 assembly language, which is a CISC 
architecture. This architecture is in use on all modern PCs and servers and is 
supported by all the main operating systems (Windows, Mac, Linux) and even 
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some gaming systems, such as the Xbox One. Making it one of the most pow-
erful to learn for software cracking.

Summary

The machine code that actually runs on computers isn’t designed for humans to 
read and understand. To be usable, it needs to be converted into a different form.

One option for this is decompilation, which produces a result that is similar 
or identical to the original source code. However, decompilation is not always 
possible.

For fully compiled languages, such as C/C++ , and many other languages, 
it is necessary to disassemble a compiled executable and analyze it in assem-
bly. However, this requires a much deeper understanding of the computer’s 
architecture and how it actually works than writing and reading code in a 
higher- level language. Now that we know the role decompilation can play and 
the need for disassembly, in the next few chapters we’ll look at how computers 
work, so we can learn to disassemble like a pro.
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Most software reverse engineering requires disassembling a compiled execut-
able and analyzing the result. This disassembly results in assembly code, not 
a higher-level language.

While a few assembly languages exist, x86 is one of the most widely used. 
This chapter introduces some of the key concepts of x86 assembly, providing a 
foundation for later chapters.

Introduction to x86

Thousands of computer architectures exist. While they all work similarly, a com-
puter is a computer— but there are minor or major differences between each.

To study reverse engineering, we need to select an architecture to focus on. 
In this book, we’ll be using x86, which was selected for a few different reasons:

 ■ Ubiquity: x86 is the most widely used assembly language, making it 
widely applicable for reverse engineering.

 ■ Computer support: x86 applications can be built, run, and reverse 
engineered on any desktop, laptop, or server.

 ■ Market share: x86 is the core of the major operating systems (Windows, 
Linux, and macOS), so it is used in billions of systems.

x86 Assembly: Data, Modes, 
Registers, and Memory Access
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The x86 architecture has been around for decades and has evolved signifi-
cantly over the years. It was first introduced in 1974 by Intel, and some of the 
main milestones in the history of x86 include the following:

 ■ Intel 8080: 8-bit microprocessor, introduced in 1974

 ■ Intel 8086: 16-bit microprocessor, introduced in 1978

 ■ Intel 80386: 32-bit microprocessor, introduced in 1985

 ■ Intel Prescott, AMD Opteron, and Athlon 64: 64-bit microprocessor, 
introduced in 2003/2004

Over its nearly 50-year history, the x86 architecture has regularly added 
new features while maintaining backward compatibility. Even if a feature was 
determined to be unused, it was never removed from the system. As a result, 
programs written for the Intel 8086 processor released in 1978 can still run on 
the latest x86 chips with no modifications.

This focus on backward compatibility has created an immense, complex, 
and interesting architecture. The latest Intel Software Developer’s manual (www 
.intel.com/content/www/us/en/developer/articles/technical/intel-sdm 

.html) is more than 5,000 pages long and only begins to scratch the surface of 
what this architecture can do. This book focuses on understanding the basics of 
x86, which is all that is needed to read, write, and manipulate most x86 code.

As the x86 architecture has changed, the term x86 has become an umbrella 
term for all of the architectures that have evolved from the Intel 8086 16-bit 
architecture. This includes the Intel 80286 architecture, which contains both 
16-bit and 32-bit architectures, and the Intel 80886 architecture, which adds a 
64-bit architecture. The term x64 specifically refers to the 64-bit version of x86.

This book will show examples in 32-bit x86 architecture. All of the concepts 
from 32-bit x86 translate exactly to x64. It is substantially easier to work on 
examples in 32 bits versus 64 as you’re learning. After studying 32-bit x86 
throughout this book, you will be immediately able to look at x64-bit assembly 
and understand it. However, your eyeballs will be thanking you for not having 
to look at 64 bits all the time, as even 32 bits are a bit painful to stare at. So, do 
not let the examples being in 32-bit give you pause that this is outdated or that 
you should focus on 64-bit out of the gate. Both of us learned 32-bit first, and 
we’ve taught software cracking a lot and can confidently say that if you give 
yourself the solid 32-bit foundation first, 64-bit becomes just another few reg-
ister names and longer values.

Assembly Syntax

Selecting x86 from the thousands of possible computer architectures is impor-
tant, but it isn’t enough. While an instruction set architecture (ISA) defines 
factors such as the registers, data format, and machine instructions, it doesn’t 
specify the syntax.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
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As long as an assembly language follows all of the rules for registers, address-
ing, etc., and defines the right set of instructions, it’s a valid x86 language. For 
example, an x86 language must have a multiply operation. However, its mne-
monic could be mul, MUL, multiply, or any other variation across any language.

The syntax of an assembly language is entirely defined by the assembler. There 
is no standard syntax for assembly language in general or for x86 assembly in 
particular. As a result, there are hundreds of different variations.

However, there are two prevalent x86 syntax options that you will find most 
x86 assembly tools use: AT&T syntax and Intel syntax. Under each of these main 
branches are hundreds of assembler-specific variations.

While Intel and AT&T assembly are both x86, they look very different. 
For example, consider a statement designed to move the memory at address 
ebx+4*ecx+2020 into register eax.

This instruction looks very different in the Intel and AT&T syntaxes:

INTEL SYNTAX AT&T SYNTAX

mov eax, [ebx+4*ecx+2020] mov 0x7e4(%ebx,%ecx,4),%eax

In the Intel syntax, after the instruction mov comes the location where the result 
will be stored. Memory access is indicated by square brackets, and the calculation 
of the memory address [ebx+4*ecx+2020] is performed within these brackets.

AT&T syntax differs from Intel syntax in a few ways:

 ■ Ordering: The arguments are swapped, so the destination location is 
listed second.

 ■ Registers: AT&T indicates registers using a percent sign (%), while Intel 
does not.

 ■ Memory Access: AT&T uses parentheses to indicate memory access, while 
Intel uses brackets.

 ■ Calculation: The calculation of the desired memory address looks very 
different in AT&T and Intel syntax.

 ■ Instructions: While not shown here, AT&T often uses different, longer 
instruction mnemonics than Intel.

For clarity and consistency, the Intel syntax was chosen for the examples in 
this book. These are some of the reasons for selecting Intel over AT&T:

 ■ Intel support: Intel is the dominant processor developer, and they use 
Intel syntax.

 ■ Tool usage: Most major reverse engineering tools, such as IDA, use the 
Intel syntax.

 ■ Readability: Intel syntax is widely considered cleaner and easier to read 
and write than AT&T syntax.
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Data Representation

Unlike humans, computers run on binary, so most reverse engineering tools 
don’t display numbers in a base-10 system. To understand what an application 
is doing, it’s necessary to understand the data it’s processing and how that data 
may be represented.

Number System Bases
A base within a numbering system defines the number of symbols used to rep-
resent the value of a digit. Most humans perform math in base 10, which uses 
the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

However, this is not the only option. It’s possible to use any base as long as 
you have enough symbols to represent the values. For example, base 5 uses the 
symbols 0–5, and base 8, also known as octal, uses the symbols 0–7.

 T I P   The base that a number is written in may be indicated by a subscript. For 
example, 1010 is written in base 10, while 102 is a binary (base 2) number.

For bases greater than 10, letters are also used as symbols. For example, base 
11 would add the letter a and use the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and a. 
Base 16, also known as hexadecimal, uses the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, 
b, c, d, e, and f.

 T I P   In base 16 or hexadecimal, case is irrelevant, so a and A are both equivalent to 
the value 10 in base 10.

In every base, we need the ability to represent values larger than the base 
number. To do this, we use multiple digits. For example, counting in base 10 
goes . . . 8, 9, 10, 11, . . ., 98, 99, 100, 101, . . . . In base 16, counting goes . . . 8, 9, 
a, b, c, d, e, f, 10, 11, . . . 19, 1a, . . . 1f, 20, . . . .

Computers are binary systems and perform all of their data storage and 
processing using 1s and 0s. However, these are inefficient and quickly become 
cumbersome to write. For example, the value 201410 is equal to 111110111102.

While computers work with binary, values will often be displayed by tools 
in hexadecimal or “hex” for readability. Values written in hex may be indicated 
by a subscript (1d16), prefixed with 0x (0x1d), or suffixed with h (1dh).

One advantage of hexadecimal (base 16) is that hexadecimal is a power of 2. 
This means that values can be converted easily between binary and hexadec-
imal via character substitution. Figure 2.1 shows how each hexadecimal symbol 
maps to base 10 and base 2 (binary).



 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access 17

For example, consider the binary value 111110111102. Each hexadecimal digit 
represents four binary digits, so this value can be broken up into three chunks 
starting from the right: 111, 1101, and 1110. From the figure, we see that these 
chunks are equal to the hex digits 7, d, and e, and the entire value can be rep-
resented as 0x7de.

111110111102 Binary number

111 1101 11102 Broken up into 4-bit nibbles from right to left

7  d    e Each nibble is translated to hex

0x7de The resulting hex value

While these conversions can be performed by hand, it’s often faster and more 
accurate to use a tool. Figure 2.2 shows an example of performing base conver-
sions using the Windows calculator.

Bits, Bytes, and Words
Bits are the base unit used by computers. However, they are too small to provide 
much utility. Instead of accessing and processing individual bits, computers 
use bytes as their smallest unit of memory. A byte contains 8 bits on all modern 
systems.

While bytes are larger than bits, they’re also too small for many operations. 
Computers are designed to optimally access a certain number of bytes at a time. 
This number of bytes is referred to as a word, is usually a power of 2, and can 
vary across computers. For example, microcontrollers have small word sizes, 
often using words containing 1 or 2 bytes (8 or 16 bits). On general-purpose 
computers, the word size is usually 4 or 8 bytes (32 or 64 bits).

Bits, bytes, and words are the most important terms to know when working 
with memory, but they aren’t the only ones. A complete list of common terms 
is as follows:

 ■ Bit: Binary digit, a 0 or 1

 ■ Byte: 8 bits

Figure 2.1: Hexadecimal
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 ■ Nibble: 4 bits

 ■ Double-byte: 16 bits

 ■ Quad-byte: 32 bits

 ■ Word: Architecture-dependent, some number of bytes

 ■ Halfword: Half a word

 ■ Doubleword (DWORD): Two words

 ■ Quadword (QWORD): Four words

 ■ Octoword, double quadword (DQWORD): Eight words

This book focuses on 32-bit architecture. In a traditional 32-bit architecture, 
that would dictate that a word is 32 bits. But this is a quirk of the x86 architecture. 
Because x86 has maintained its backward compatibility with the original 16-bit 
architecture, a word on x86 is 16 bits, and a double word is 32 bits.

 T I P   In 32-bit x86, a byte is 8 bits, and a doubleword is 32 bits.

Figure 2.2: Base conversions in the Windows calculator
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Working with Binary Values
Reverse engineering commonly involves working with large binary numbers 
that span multiple different bytes. When working with these numbers, under-
standing concepts such as zero-extension, bit and byte significance, and endian-
ness is necessary to correctly interpret the number that a binary string represents.

Zero-Extension and Readability

Binary values are commonly zero-padded or zero-extended to the word size of the 
architecture. On a 32-bit architecture, this means adding 0s to the left of the value 
until it is 32 bits long. For example, the value 110012 would be zero-padded to 
00000000 00000000 00000000 000110012.

Note that the bits are also broken into groups of four or eight to improve 
readability. This is just like commas are sometimes added every three digits in 
base 10 (i.e., 1,000 instead of 1000). When values are written in hexadecimal, 
they are also grouped by bytes with two characters per byte. For example, the 
value 4D216 (equivalent to 123410) can be written as 0416 D216.

Bit and Byte Significance

The bits and bytes within a binary number may be labeled based on their relative 
weight in a number. Figure 2.3 illustrates some of these common labels.

In the value 00000000 00000000 00000000 000110012, the least significant bit 
(LSB) is the one at the far right, which has a value of 1. The most significant bit 
(MSB) is at the far left and has a value of 0. When converting from binary to base 
10, the MSB will be multiplied by 231, while the LSB will be multiplied by 20.

In addition to MSBs and LSB, there are also the concepts of the least and most 
significant bytes. In the value 00000000 00000000 00000000 000110012, the least 
significant byte has a value of 000110012, while the most significant byte has a 
value of 000000002.

Bits and bytes may also be labeled based on their proximity to the ends of the 
value. For example, bits and bytes near the LSB are said to be low-order, while 
bits and bytes near the MSB are high-order.

Figure 2.3: Bit and byte significance labels
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Endianness

In memory, data is stored in bytes. However, many data types use multiple 
bytes. For example, an int is 32 bits or 4 bytes.

Endianness describes the order that these bytes are stored in memory. In a little-
endian system, the least significant byte is stored first (at the lowest address). In a 
big-endian system, the most significant byte is stored first (at the lowest address).

For example, consider the value 133710, which is 0000 0000 0000 0000 0000 
0101 0011 10012 in binary or 0x00000539 in hex. Figure 2.4 shows how these 
values would be stored in memory.

DEFINITION

In a little-endian system, the least significant byte is located at the smallest address. In a 
big-endian system, the most significant byte is at the smallest address.

Regardless of the endianness of the system, the address associated with a 
variable is the lowest address used or base address. In both a little and big-endian 
system, this would be address 1828 in this example.

This book focuses on the x86 architecture, which is little endian. As a result, 
the least significant byte of a chunk of data will be located at offset 0 from the 
base address. You’ll notice that this looks “backwards” to humans, as we read 
and write in big endian.

 T I P   x86 is a little-endian architecture, so the lowest address contains the least 
significant bit.

Registers

Registers provide the processor with high-speed access to data. Since registers 
are physically located within the CPU, they have much lower latency than 
memory, where requests must traverse buses and bridges to access data.

In a 32-bit architecture, a register contains 32-bits of data and can be treated 
like a variable in a program. Each register has a unique name, and the data 
within a register can be modified based on computations or loading new values 
from memory.

Figure 2.4: Endianness
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The main limitation of registers is that they are limited in number and must 
be shared by the whole program. If a program runs out of registers, it needs to 
start storing information in memory, which negatively impacts performance. 
With a limited number of registers, the normal execution cycle is as follows:

 ■ Fetch data from memory and store it in registers

 ■ Work with data

 ■ Save data back to memory

 ■ Repeat

Registers in x86
As we’ve mentioned before in the architecture overview, registers are special 
names and places in the CPU that allow for very fast operations. All registers 
can be thought of in two distinct categories.

 ■ General-purpose registers (GPRs): Used for general storing data, addresses, 
etc., and are directly manipulable

 ■ Special-purpose registers (SPRs): Used to store the program state

The x86 architecture defines numerous registers, which are shown in Figure 2.5. 
However, many of those are reserved for use by the CPU itself, making it necessary 
to know only a subset of them.

x86 General-Purpose Registers

GPRs perform most of the heavy lifting within an application, storing values 
fetched from memory, doing data manipulations, and storing the results of cal-
culations. The following GPRs are the most significant ones in x86, and each 

Figure 2.5 x86 registers
Source: Liam McSherry/ wikimedia Commons /CC BY-SA 3.0.
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can store 32 bits of data. Each accumulator has a role that it is traditionally used 
for and that it is named after; however, GPRs can be used for any purpose, and 
you can put a counter in any register, not just the ecx register.

eax

eax is the “accumulator” register. Its name comes from the fact that it is com-
monly used to hold the result of an arithmetic operation. For example, a program 
may perform the calculation eax += ebx.

ebx

ebx is the “base” register. It is commonly used to hold the base address of 
the chunk of memory used to store a variable. For example, the expression  
[ebx + 5] can be used to access the fifth element of an array.

ecx

ecx is the “counter” register and is traditionally used to count. For example, 
ecx might be used to track the current iteration of a loop. In the command for  
(i=0; i<10; i++), the variable i is likely to be stored in the ecx register.

edx

edx is the “data” register. Its name comes from the fact that it is commonly used 
to hold data. For example, an application may include the instruction sub edx, 7.

esi

esi is the “source index” register. It is traditionally used to store an index into 
a source array. For example, in the command array[i] = array[k], the value 
of k would likely be stored in esi.

edi

edi is the “destination index” register. It is used to store an index into a desti-
nation array. For example, in the command array[i] = array[k], the value of 
i would likely be stored in edi.

ebp

ebp is the “base pointer” register. Its purpose is to store the address of the base 
of the current stack frame. The concepts of the program stack and stack frames 
will be explored in later chapters.
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esp

esp is the “stack pointer” register. It stores the address at the top of the current 
stack frame.

Special-Purpose Registers

SPRs are designed for specific tasks and are not allowed to be directly modified. 
For example, the instruction mov eip, 1, which uses an SPR, will not assemble, 
while mov eax, 1, which uses a GPR, will.

eip

eip is the “instruction pointer” register. It stores the address of the next instruction 
to execute.

eflags

eflags is the “flags” register. It stores “flags,” which have a value of true or 
false and hold information about the system state and the results of previously 
executed instructions.

 T I P   GPRs are both readable and writable, but SPRs are read-only.

Working with Registers
In assembly, GPRs can be treated just like variables and accessed by name. 
For example, the instruction mov eax, 1 stores the value 1 in eax, while  
add eax, ebx adds the contents of eax to ebx.

Note that all of these register names begin with the letter e. This is because 
these 32-bit registers were “extended” from the original 16-bit registers.

The lower half of a register’s contents can be accessed by removing this e from 
the name. For example, the register ax contains the low 16 bits of the eax register.

If a register’s name ends with x (eax, ebx, ecx, and edx), this 16-bit register 
can be further divided into two 8-bit registers, which are identified by l and h. 
al contains the low-order 8 bits of the register ax, while ah contains the high-
order 8 bits. This is illustrated in Figure 2.6, where eax=0x01234567, ax=0x4567, 
ah=0x45, and al=0x67.
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64-Bit Registers

In 64-bit x86, all of the instructions and behavior are the same as 32-bit x86. 
However, 64-bit architectures have more and larger registers.

Figure 2.7 shows the commonly used registers in 64-bit x86. In addition to 
the 32-bit registers described differently, 64-bit architectures include eight more 
registers labeled r8-r15.

All 64-bit registers are also larger than their 32-bit counterparts. For the reg-
isters that exist in 32-bit x86, such as eax, the full 64-bit counterpart replaces 
the e with an r, which makes the register rax. The lower 32 bits of the register 
are then accessible using the 32-bit name, and the uses of names such as ax, al, 
and ah remain unchanged.

For new registers like r8, 64-bit x86 allows access to the lower 32, 16, and 8 
bits. These are labeled as d (r8d), w (r8w), and b (r8b) respectively, as shown 
in Figure 2.8.

Memory Access

A 32-bit (or 64-bit) system has only a limited number of registers available. When 
ignoring the SPRs and GPRs used to track the stack (esp and ebp), you’re left 
with only six registers available for general computation (eax, ebx, ecx, edx, esi, 
and edi). This isn’t enough to do much, which is why a program also needs to 
be able to read and write data to memory.

In Intel x86 assembly syntax, memory access is indicated using [] notation. 
For example, the data stored at address 0x12345678 can be accessed using 
[0x12345678]. Memory addresses can also be stored in registers, such as the 
instruction [eax].

Specifying Data Lengths
When accessing data from memory, it’s necessary to not only know the address 
where the data is located but also how much memory to access. For example, 
the instruction [0x12345678] doesn’t specify whether the program wants a byte, 
a word, a double word, or more.

Figure 2.6: Pieces of the eax register
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In some cases, the length of the data being accessed can be inferred from 
context. For example, in the instruction mov eax, [0x12345678], the data being 
fetched from memory will be stored in eax. Since eax is a 32-bit register, the 
program must be requesting 32 bits of data.

Figure 2.7: Common x64 registers
Source: Bobmon / Wikimedia Commons / CC BY-SA 4.0.
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This is not always the case. For example, consider the command  
mov [0x12345678], 1, which places a value of 1 at a particular address in 
memory. However, this instruction doesn’t specify the length of the value being 
set. Should 1 be considered a byte (0000 0001), a word (0000 0000 0000 0001), 
or a doubleword (0000 0000 0000 0000 0000 0000 0000 0001)? Leading zeros 
are often trimmed from values for clarity and compactness, so any of these are 
potentially valid interpretations of moving a 1.

 T I P   Traditionally, 32-bit x86 should have 32-bit words. However, backward compat-
ibility with 16-bit x86 architectures means that words are 16 bits and a doubleword 
(dword) is 32 bits.

When the size of a memory access is not implied, it must be explicitly spec-
ified within the instruction. For example, the instruction byte [100] accesses 
the byte at address 100, word[ebx] accesses the word pointed to by ebx, and 
dword[ax] accesses the doubleword pointed to by ax. Figure 2.9 shows the 
difference between the following three instructions.

mov byte[100], 1 
mov word[100], 1
mov dword[100], 1 

Figure 2.8: Pieces of the r8 register

Figure 2.9: Comparing differently sized mov instructions
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Addressing Modes

In Intel x86 syntax, memory addresses are indicated by square brackets. For 
example, [0x1234] indicates that the program should access the memory located 
at address 0x1234.

However, memory addressing is not limited to specifying addresses with 
immediate values like 0x1234. The x86 language supports a few different addressing 
modes. Different addressing modes are used to access different types of variables.

Absolute Addressing
Absolute addressing uses a constant value to specify an address. This constant value 
can be specified in any base, such as [1] or [0x1234]. It also can be the result 
of an arithmetic operation, [0x1337 + 0777], or indicated by a label [label].

Example: Global Variables

In C/C++, global variables are intended to be accessible from anywhere within 
a program. To achieve this, they are stored in memory at a fixed address and do 
not move as the application moves through various stack frames.

This means that, in assembly, the exact address of the variable will always be 
known. Therefore, global variables will be accessed using absolute addressing 
such as mov eax, [0x1000].

Indirect Addressing
Indirect addressing uses registers to specify the address. This includes both 
16-bit GPRs, such as [ax], and 32-bit GPRs, such as [eax]. However, 8-bit GPRs 
(al, bh, etc.) and SPRs can’t be used for addressing.

Example: Pointers

Many programming languages use the concept of pointers, some more directly 
and others hidden behind the scenes. Direct usages and manipulation of pointers 
are an example of a C/C++ data type that commonly uses indirect addressing. 
A C program may contain the line int x = 1; int* p = &x; where the pointer 
p is set to point to x. If you aren’t familiar with C, don’t worry; just know that 
p holds the address of where x is in memory.

However, the value of p may be changed to point to other things, so the 
address of its target is not fixed. To access the value indicated by p in assembly, 



28 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access

p will first be loaded into a register, and then this register will be used to find 
the desired value. This is shown in the following x86 instructions:

mov ebx, [p]        ; Load the address indicated by p into ebx
mov eax, [ebx]      ; Move the value indicated by p into eax

Base + Displacement Addressing
Some variables, such as arrays, are stored in memory using a base address 
and offsets. Individual values within the array can be accessed using the base 
address and a displacement.

Base + displacement addressing or based addressing uses the combination of a 
register value and a displacement to indicate an address. This type of mode is 
often used for access into arrays. So in a language where you might have had 
myList[8], you’re accessing eight elements from the base of myList. In assembly, 
for example, [eax + 8] indicates the eight bytes from the base address of the 
array, which is stored in eax.

Indexed Addressing
Base + displacement addressing works well if the elements in an array are 
always a single byte long. For arrays with larger elements, the offset must be 
computed by hand, which is tedious and prone to error.

In these cases, indexed addressing can be a better choice. Indexed addressing 
uses an index register, a scale factor, and a displacement to specify the address. 
The scale factor must always be 1, 2, 4, or 8.

Example: Arrays

Let’s define an array of integers, int x[100];, which declares an array contain-
ing 100 ints. In memory, each value in the array is stored at a particular offset 
from the base address. This offset is determined by the size of the values in the 
array, such as a 32-bit or 4-byte int.

Assume that the int array was created at offset 0x1000. The following 
instruction would move the nth element of the array into eax if n is stored in ebx:

mov eax, [ ebx * 4 + 0x1000]

Based-Index Addressing
Based-index addressing combines elements of indexed addressing and base + 
displacement addressing. It uses a base register, an index register, a scale factor 
(1, 2, 4, or 8), and a displacement for the address.
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For example, consider [ ebx + edi * 4 + 0x1000 ]. This address has a base 
stored in ebx, an index stored in edi, and a displacement of 0x1000.

Example: Structs

Based-index addressing is ideal for accessing elements of nested data types. For 
example, consider the C command struct { int i; short a[4]; } s;. This 
creates a struct containing multiple fields, including an array.

Each element within this struct is located at a particular offset, which means 
that the array a has a certain displacement or base address. However, the elements 
contained within a are also located at different offsets from this base address.

Assume that base address of the struct s is stored in ebx, and the array a is 
stored 4 bytes from this base address. The following instruction will access the 
nth element within a if n is stored in ecx:

mov eax, [ebx + 2 * ecx + 4]

Don’t get too tripped up if the more advanced addressing is hard to grasp. 
Your operating system has been hiding memory from you, so it’s natural that 
thinking about how arrays are stored in memory is new territory. These address-
ing modes need to be introduced as theory first, but they can be hard to grasp 
before you start to see them in use later in real assembly code. And don’t worry, 
you will.

Summary

x86 is a commonly used assembly language. Understanding how it works is 
essential to becoming a successful software reverse engineer and cracker.

This chapter explored some of the key concepts of x86 assembly. These include 
data representation, assembly syntax, and the use of registers and memory 
addresses for data access and storage.
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Cracking and reverse engineering involve reading, writing, and modifying 
assembly code. In this book, the focus is on the x86 assembly language.

It isn’t necessary to understand every detail of x86 assembly to be a reverse 
engineer or even to write programs in assembly. This chapter explores the fun-
damentals of x86 and the main instructions that make up more than 90 percent 
of assembly code for software.

x86 Instruction Format

Mnemonics are used in x86 assembly to make human-readable assembly code. 
Each of these mnemonic instructions is assembled into the machine code that 
controls the processor. So, the processor has no notion of mnemonics, only the 
machine code. For example, the mnemonic add assembles to the machine code 
value 0x04.

In x86, instructions are written in a particular format. An example of a simple 
x86 instruction is:

add eax, 1

In this instruction, add is the mnemonic used to instruct the processor on 
what to do. This instruction also includes a couple of operands that indicate 

x86 Assembly: Instructions
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the data to be used in this operation. In this case, the operands are the register 
eax and the value 1. An x86 instruction under normal conditions can have up 
to three operands if it has any at all. There are special extensions to the lan-
guage that allow extensions up to four operations (VEX prefix), but we won’t 
be delving into this corner of assembly.

The operands to x86 instructions can be registers, immediates, or memory 
addresses. Registers are usually the general-purpose registers (GPRs), and 
memory locations are specified by address. Immediates are numbers or constants 
like 12345.

While an x86 instruction can include any of these, it can contain a maximum 
of one memory location. For example, the instructions add eax, ebx and  
add eax, [0x12345678] are valid because they access two registers and a 
register and a memory location, respectively. However, the instruction  
add [0x12345678], [0x87654321] is invalid because it uses two memory 
addresses at once. This is because the processor pipeline is a delicate design 
that can perform only one memory fetch per instruction.

x86 Instructions

The x86 assembly language includes hundreds of different instructions. Some 
of the most commonly used include the following:

 ■ Arithmetic

 ■ add

 ■ sub

 ■ mul

 ■ inc

 ■ dec

 ■ Bit Manipulation

 ■ and

 ■ or

 ■ xor

 ■ not

 ■ Stack

 ■ call

 ■ return

 ■ push

 ■ pop
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 ■ Data movement:

 ■ mov

 ■ Execution flow

 ■ jmp

 ■ Conditional jumps

 ■ Comparison

 ■ test

 ■ cmp

 ■ Other

 ■ lea

 ■ nop

While this may seem like a lot, consider the common operators used in program-
ming languages (+, −, *, /, %, &&, ||, &, |, ̂ , !, ~, <, >, >=, <=, ==, ., −>, etc.) and the 
main keywords (if, else, switch, while, do, case, break, continue, for, etc.). 
It takes a lot of capability to achieve these behaviors in assembly.

Truthfully, no one knows all of the x86 instructions or has a need to (unless 
they really want to impress their friends). A complete list of x86 instructions 
can be found at http://ref.x86asm.net/coder32.html, and the details of any 
instruction can be looked up when needed.

However, a clear understanding of how the most common x86 assembly works 
is essential to success as a reverse engineer. If you understand this important 
subset of x86 instructions, you will be able to read and understand most x86 
programs.

mov
As its name suggests, the mov instruction is designed to move data from one 
location to another. This includes copying data between registers and memory 
locations or placing an immediate at a particular location. Note that despite its 
name being move, it copies data; it does not move it (meaning it is not removed 
from source; it is rather copied from source to destination).

The syntax of the mov instruction is mov destination, source. For example, 
the command mov eax, 5 places the value 5 in the register eax. Similarly, the 
instruction mov eax, [1] moves the value at address 0x1 into eax.

When working with mov and similar instructions, it is important to recall that 
the names of the variables used impact the length of the value being moved. 
For example, the instruction mov eax, [0x100] moves a 32-bit value into eax, 
while the instruction mov dx, [0x100] moves a 16-bit value into dx.

http://ref.x86asm.net/coder32.html
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 N OT E   An x86 operand can use a register value to indicate a memory address. For 
example, the instruction mov [eax], ebx moves the value stored in ebx into the 
memory location whose address is stored in eax. So, if eax has a value of 0x7777, 
memory address 0x7777 is where the value of ebx is stored.

mov is an extremely versatile operator and a great example of the power of 
mnemonics versus machine code. mov can be used in a variety of different ways 
as shown in Figure 3.1, and each of those translates to a different machine code 
depending which two operands are used. However, all of these different vari-
ations are represented as mov at the mnemonic level. It’s the assembler’s job to 
translate the mnemonic to the correct machine code.

Figure 3.1: mov instructions
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Hands-on Example

How would the following pseudocode be written in assembly? Assume that 
variable i is located at address 100, and j is located at address 200.

int i = 42, j = i;

This single line of pseudocode could be assembled into three x86 instructions.

mov [100], 42
mov eax, [100]
mov [200], eax

Note that the register eax is used to store the value being copied from memory 
address 100 to memory address 200. The reason for this is that a single instruction 
can’t perform two different memory accesses. A register, such as eax, must be 
used for temporary storage.

When looking at the code, it might seem like it would make more sense to load 
address 200 with the immediate 42 rather than taking two operations to load it 
from memory address 100. However, a compiler won’t and shouldn’t do this.

The reason for this is the potential for multithreaded applications. If another 
thread is running on the system, the value at location 100 may have been updated 
between the step assigning it a value of 42 and the step assigning its value to 
location 200. Copying the value from location 100 rather than using an immediate 
helps to ensure that the variable j at location 200 receives the most up-to-date 
version of the value stored in i.

inc, dec
The inc and dec x86 instructions increment or decrement the indicated value 
by 1, respectively. This is the equivalent of the instructions i++ or i-- in tradi-
tional code.

These instructions take a single operand, which can be a register or memory 
address. For example, the instruction inc eax increases the value stored in eax 
by 1, while dec [0x12345678] decreases the value stored at memory address 
0x12345678 by 1.

add, sub
The add and sub instructions add or subtract value from a specific value, respec-
tively. These instructions accept two operands. For example, an add instruction 
would be specified as add destination, value.

The destination in an add instruction can be a register or memory location, 
while the value can be a register, memory location, or immediate. The operation 
takes destination + value and stores the result in destination. This means 
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destination’s incoming value is relevant to the mathematical expression but 
is overwritten to save the result. Note that the size of the two operands must be 
the same. For example, add eax, ebx is a valid instruction (32-bit plus 32-bit), 
while sub eax, bx is not (32-bit minus 16-bit).

When using add and sub, it is important to consider the sizes of the 
values being used. For example, the instruction sub ecx, [100] implies a 
32-bit value by its use of ecx as the destination. However, the instruction  
add dword [edx], 100 requires the dword size specifier because the 32-bit value 
edx indicates that the memory address is 32 bits long but doesn’t specify the 
size of the data being modified at that location.

mul
The mul operation performs unsigned integer multiplication. However, it is a 
bit unusual because it takes only a single operand but implicitly uses two addi-
tional registers. The syntax of a mul operation is mul operand, where operand 
can be a register or memory address. The operation multiplies the value stored 
in eax with the value specified in the operand.

The result of a mul operation is stored in edx:eax with edx containing the 
high 32 bits of the result. The values stored in edx and eax are always modified 
by mul even if the result is less than 32 bits long and edx is not needed. mul is 
interesting because you can get a 64-bit output (edx:eax) on 32-bit math.

An example of the mul operation is mul eax, which squares the 32-bit  
value stored in eax. When operand contains a memory address, the length of 
the value can vary. For example, mul dword [0x555] multiplies eax by a 32-bit 
value stored at 0x555, while mul byte [0x123] uses an 8-bit value stored at 
0x123 in the multiplication.

div
The div operation performs unsigned division. Like mul, it takes a single operand 
and modifies the eax and edx registers implicitly. In this case, the quotient is 
stored in eax, and the remainder is stored in edx. For those in need of a quick 
math lingo reminder (don’t be embarrassed, math buzzwords hurt my brain 
too) 5 divided by 2 would have a quotient of 2, and a remainder of 1.

The div operation uses both eax and edx for its input and formats them in the 
same way as mul’s output with the high 32 bits contained within edx. As with 
mul, the output always modifies eax and edx even if edx is not needed (i.e., the 
remainder is zero).

An example of the div operation is div eax. This is equivalent to the calcu-
lation eax, edx = edx:eax / eax . In this case, the operand is a 32-bit register, 
but memory addresses can indicate and use divisors of different lengths.
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Hands-on Example

Assume that you wanted to calculate the remainder of 123/4. This can be accom-
plished via four assembly instructions.

mov eax, 123  ; Load the lower 32 bits of the dividend into eax
mov edx, 0    ;  Clear the edx register, which holds the higher 32 bits of 

the dividend
mov ecx, 4    ;  Load the divisor into ecx since div can't take an 

immediate operand
div ecx       ; Perform the division

At the end of this process, the quotient is stored in eax, and the remainder 
is stored in edx.

and, or, xor
The x86 standard includes support for a few different Boolean operations. The 
and, or, and xor operations all take two operands. Truth tables for these three 
operations are shown here. The input options are shown on the top and left 
edges of the table. For example, to find 1 AND 1, we find the intersection of the 
1 column and 1 row, and the result is a 1. So, 1 AND 1 is 1.

AND 1 0 OR 1 0 XOR 1 0

1 1 0 1 1 1 1 0 1

0 0 0 0 1 0 0 1 0

All three operations use the same syntax: mnemonic destination, source. 
For example, the and operation syntax is and destination, source. Like the 
add operation, the destination must be a register or memory address, while 
the source can be a register, memory address, or immediate. And also like the 
add operation, the destination is used in the calculation but also overwritten 
to save the result.

Boolean operations can be used for a variety of different purposes. For example, 
the operation or eax, 0xffffffff is a quick way to set the value of eax to all 
1s. The operation and dword [0xdeadbeef], 0x1 masks off everything but the 
low bit of the 32-bit value at location 0xdeadbeef. The operation xor eax, eax 
is a common method for clearing the value of eax.

not
The not operation is a Boolean operation that computes the one’s complement 
of a value. For those not familiar with the term one’s complement, you can essen-
tially think of it as taking all 0s and making them 1s and vice versa. It inverts 
the number. It takes a single operand with the syntax not operand.
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The not operator can work on values of various lengths. For example, the 
operation not ch computes the one’s complement of the 8-bit register ch. The 
command not dword [2020] computes the one’s complement of a 32-bit value 
located at address 2020.

shr, shl
shr and shl are two of the shift operations available in x86, with shr being shift 
right, and shl being shift left. They take two operands: the location of the value 
to be shifted and the amount by which they should be shifted. An example shift 
operation is shr register, immediate.

shr and shl are logical shift operators. This means that when shifting the 
value by the indicated immediate value, they will zero-extend the value to the 
left or right. So, any new digits that appear as a result of the shift will be auto-
matically 0.

For example, the operation shr al, 3 will shift the value stored in al to the 
right by three bits. If al contains the value 00010000, then the resulting value 
will be 00000010.

 T I P   Zero-extending a right-shifted value will fill empty bits with zeros and is called a 
logical shift. Sign-extending a right-shifted value will fill empty bits with the same value 
as the most significant bit and is called an arithmetic shift.

sar, sal
sar and sal are arithmetic shift operators. Their syntax is identical to that of the 
logical shifts, but they differ in implementation. sar does an arithmetic shift to 
the right and sal an arithmetic shift left.

When performing a left shift, sal operates the same as shl, zero-extending the 
value. For example, the instructions shl al, 3 and sal al, 3 with the value 
00000100 stored in al will both produce the value 00100000. All new positions 
that were opened in the number were filled with 0s.

However, a sar operation will sign-extend the value, while shl will zero-extend 
it. A sign-extend means it will replicate whatever bit was the most significant. 
For example, if al contains the value 10000000, then the command shr al, 3 
will produce the value 00010000, as shown here:

10000000     Initial value
01000000     1- bit shift
00100000     2- bit shift
00010000     3- bit shift

However, the instruction sar al, 3 will result in 11110000. Because the most 
significant bit is a 1, a 1 is replicated in all new positions.
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nop
The nop operator stands for “no operation.” It is a one-byte operator (0x90) that 
does nothing.

While nop technically does nothing, it is used for a variety of legitimate pur-
poses, including the following:

 ■ Timing

 ■ Memory alignment

 ■ Hazard prevention

 ■ Branch delay slot (RISC architectures)

 ■ A placeholder to be replaced later by a future patch

And in the security world it is used for the following:

 ■ Hacking (nop sleds)

 ■ Cracking (nop outs)

lea
The lea operator stands for load effective address. It takes two operators, including 
the destination (a register or memory address) and the source, which must be 
a memory address. The lea instruction computes the address of the indicated 
source operand and places it in the destination. For those familiar with pointers, 
it is similar to the & operator.

While lea  is designed to work with addresses, it is also commonly 
used for simple mathematical operations. For example, the operation  
lea eax, [ebx + ecx + 5] asks what address ebx+ecx+5 points to and then 
stores that into eax. This essentially computes ebx + ecx + 5 and stores the 
result in eax. A more standard use of the lea operator, lea eax, [100], would 
place the value 100 in eax.

While on the surface this can look a little silly or pointless, lea is a useful 
operator because it makes working with arrays in assembly more efficient. In 
arrays, values are stored at a particular offset from a base address. (Remember 
our base + displacement addressing modes?) With lea, it is possible to effi-
ciently calculate the address of a particular element in an array. For example, 
assume that eax contains the base address of a character array. In that case, 
the instruction lea ebx, [eax + 2] would place the address of the second 
element in the array in ebx. This single instruction is more efficient than the 
series of instructions mov ebx, eax and add ebx, 2, which accomplishes the 
same result.
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Hands-on Example

How would the following pseudocode be written in assembly? Assume that i 
is at address 100, j is at address 200, and k is at address 300.

int i = 7;
char j = 5;
int k = i + j; 

This pseudocode would be assembled into the following x86 instructions:

mov dword [ 100 ], 7  ; set i
mov byte [ 200 ], 5   ; set j
 
mov eax, [ 100 ]      ; load i into eax
xor ebx, ebx          ; zero ebx
mov bl, [ 200 ]       ; load j into ebx
 
add eax, ebx          ; add ebx to eax, store in eax
 
mov [ 300 ], eax      ; save result to k

In this example, note the use of both ebx and bl. The value that was to be 
stored in this register fits in bl. However, when performing the add operation, 
the entire ebx register is used. This is because of class promotion, if you add 
a 1 byte value to a 4 byte value the 1 byte values promoted to 4 bytes, and the 
additional bytes must be 0. So in this case what was 0x05 in bl, is promoted to 
0x00000005 in ebx. The XOR operation to clear ebx was necessary to ensure that 
the previous value stored in the ebx register was completely purged and did 
not affect the result of the add.

Putting It All Together

So far, many of the examples have been simple operations using only a couple 
of x86 operators. Now, try to write assembly code for the following pseudocode, 
assuming that i is at address 100, j is at address 200, and k is at address 300.

int i = 7;
char j = 5;
int k = i * i + j * j;

This pseudocode assembles into the following x86 instructions:

mov dword [ 100 ], 7  ; set i
mov byte [ 200 ], 5   ; set j
 
mov ecx, [ 100 ]      ; load i into ecx
xor ebx, ebx          ; zero ebx
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mov bl, [ 200 ]       ; load j into ebx
 
mov eax, ecx          ; copy ecx into eax (eax = ecx = i)
mul ecx               ; multiply ecx by eax, store result in eax
mov ecx, eax          ; save result back to ecx to free up eax
 
mov eax, ebx          ; copy ebx into eax (eax = ebx = j)
mul ebx               ; multiply ebx by eax, store result in eax
 
add eax, ecx          ; add ecx to eax, store result in eax
mov [ 300 ], eax      ; save final value to k

Common x86 Instruction Mistakes

x86 is a powerful assembly language, and most instructions follow a consistent 
set of rules. However, it does have its inconsistencies that can trip people up.

Here are some examples of common mistakes that people make when trying 
to write their own x86 that result in code that will not assemble:

 ■ mov [bl] , 0xf: x86 supports indirect addressing using 16 and 32-bit 
GPRs. Since bl is only 8 bits long, it can’t be used for addressing.

 ■ mov [0xabcd], 1337: This instruction doesn’t specify the size of the value 
to be moved since 1337 may be recorded as 0x0539 or 0x00000539.

 ■ mov word [0xabcd], eax: This instruction has an incorrect memory size 
specified since a word is 16 bits but eax holds 32 bits.

 ■ mov byte [1], byte [2]: Two memory locations can’t be used in the 
same instruction.

 ■ mov sl, al: While eax has an al register, no sl register exists.

 ■ mov 0x1234, eax: The value 0x1234 is an immediate, not a memory 
address, and can’t be the destination of a command.

 ■ mov eax, dx: This instruction has a size mismatch between the 16-bit 
source dx and the 32-bit destination eax.

When In Doubt, Look It Up
Remember, nobody (not even me, though that’s hard for me to admit) knows 
all of the x86 instructions by heart. Whether you’re writing x86 or reading it, 
if you encounter something you don’t understand, knowing how to look it up 
quickly is key. We always have this tab open for quick lookups: http://ref 
.x86asm.net/coder32.html.

http://ref.x86asm.net/coder32.html
http://ref.x86asm.net/coder32.html
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Summary

x86 is a complex, powerful assembly language. However, it isn’t necessary to 
understand every bit of it to be an effective software cracker and reverse engineer.

This chapter covered the x86 instructions that make up the vast majority of 
assembly code. Learning these instructions is essential and provides a strong 
foundation for reverse engineering.
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Software reverse engineering is about taking a compiled executable and turning 
it into human- readable code. However, understanding how to do the opposite, 
building and running an assembly program, can be invaluable to understanding 
this process.

This chapter explores some of the key concepts needed to understand how 
assembly programs are built and run. This includes how these programs interact 
with the outside world, how to actually build and run them, and how they 
manage strings.

Output

ANECDOTE

In college, I found out it’s pretty fun to go to a thrift store and buy a bunch of broken 
electronics, tear them apart, and rebuild the pieces into something else. Figure 4.1 is 
one of the first things I ever built. I really like working with impractical things because 
thinking and designing and building and learning is fun, but as soon as you start to 
worry about actual applications and usability, it takes away from the enjoyment. So, I 
go out of my way to try to work on impractical things.

Building and Running Assembly 
Programs
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I was trying to think of the most impractical thing that I could make here. This is a 
binary wristwatch that has to be plugged into a power outlet. I never did find a wrist-
band for it, but I was trying to think of the nerdiest thing I could make, and this seemed 
pretty nerdy.

Assembly and machine code are great, but at some point your code will want 
to communicate with the outside world. For that we need a way to output 
information.

If you’ve ever looked at a processor, they are covered in little pins. A proces-
sor’s pins enable the processor to communicate with the outside world. Using 
assembly, it is possible to control these pins by toggling them on and off, causing 
effects such as turning LEDs on and off. A modern x86 processor has between 
400 and 1,000 pins, making it possible to control a lot of things.

Pins are organized into groups called ports. With ports, instead of controlling 
individual pins, which would be tedious and time- consuming, it is possible to 
control several at the same time. Setting a value on the pins is equivalent to 
writing to the port, and getting a value from the pins is reading from the port.

A number of different ports are defined for x86. Table 4.1 shows some exam-
ples of a small subset.

Figure 4.1:  Binary wristwatch

Table 4.1: x86 Ports

PORT RANGE SUMMARY

0x0000- 0x001F The first legacy DMA controller, often used for transfers to floppies

0x0020- 0x0021 The first programmable interrupt controller



 Chapter 4 ■ Building and Running Assembly Programs 45

Controlling Pins
In x86, pins can be controlled via the in and out instructions, which take a reg-
ister and a port as parameters.

The syntax of the in instruction is in register, port. For example,  
in al, 0x64 gets the status of the keyboard.

The out instruction reverses the order of the parameters, with the syntax  
out port, register. For example, out 0x3c0, eax sets the value of a pixel.

In actuality, you are often not directly hardwired to the destination or source 
ports, and things are a little more complicated. Pins are attached to a shared bus, 
and the work of sending reads/writes to the correct destination is offloaded 
to a separate card or bridge. The in and out instructions access predefined 
addresses on the bus that the bridge translates. However, the idea is the same.

Tedium
Let’s get back to this notion of output: through in and out instructions it is 
possible to set and unset individual pixels. However, a single display screen 
can contain thousands or millions of pixels. Setting them individually would 
be tedious and inefficient.

PORT RANGE SUMMARY

0x0022- 0x0023 Access to the model- specific registers of Cyrix processors.

0x0040- 0x0047 The programmable interval timer (PIT)

0x0060- 0x0064 The “8042” PS/2 controller or its predecessors

0x0070- 0x0071 The CMOS and RTC registers

0x0080- 0x008F The DMA (page registers)

0x0092 The location of the fast A20 gate register

0x00A0- 0x00A1 The second PIC

0x00C0- 0x00DF The second DMA controller, often used for sound blasters

0x00E9 Home of the Port E9 hack

0x0170- 0x0177 The secondary ATA hard disk controller

0x01F0- 0x01F7 The primary ATA hard disk controller

0x0278- 0x027A Parallel port

0x02F8- 0x02FF Second serial port

0x03B0- 0x03DF The range used for the IBM VGA, its direct predecessors

0x03F0- 0x03F7 Floppy disk controller

0x03F8- 0x03FF First serial port
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Instead, these details are abstracted away. When displaying images, the 
graphics card handles the details of setting each of the individual pixels. How-
ever, learning exactly how to communicate with the graphics card can be tedious.

This is where the operating system steps in. It can handle the complexity of 
interfacing with the graphics card, which sets the pixel values and displays the 
image. Interacting with the operating system requires a system call. So if you 
want to play x86 on epic hard mode, you can go down the route of directly 
interfacing with the graphics card, but for the purposes of this book, we like 
to play on hard- with- help mode, and we’ll leverage the OS to do this heavy 
lifting for us.

System Calls

System calls are available in x86 to provide limited I/O functionality invoking 
behavior through the operating system (OS). The sets of available system calls 
vary depending on the operating system.

Since system calls are a notion of the OS, they are OS-dependent; we will go 
through some of the more useful system calls in Linux. System calls are invoked 
by loading a function number into the eax register. In Linux, a system call is 
then made by invoking an interrupt through the instruction int 0x80.

sys_write
In a higher- level programming language, the sys_write function would have 
the syntax ssize_t sys_write(unsigned int fd, const char * buf, size_ 
t count). This function will return a size indicating the amount of data written.

The sys_write function takes three arguments. The first, fd, is a file descriptor 
that indicates where the data should be written. A value of 1 would indicate 
writing data to the Linux console. The buf argument contains the data to be 
written as output, and count tells the function the number of characters to print.

In x86 assembly, functions can’t be called using this function description. 
Instead, the arguments would be loaded into registers, as shown in Table 4.2. 
After loading these registers, the system call can be performed with the  
int 0x80 instruction.

Table 4.2: sys_write

REGISTER VALUE DESCRIPTION

eax 4 sys_write identifier

ebx 1 (console out) File descriptor

ecx const char* buf String to write

edx size_t count Length of string
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The registers used in the sys_write function must be loaded over a series 
of assembly instructions. The following example shows how sys_write could 
be used:

mov   edx,len       ; message length
mov   ecx,buff      ; message to write
mov   ebx,1         ; file descriptor (stdout)
mov   eax,4         ; system function(sys_write)
int   0x80          ; call kernel

sys_exit
The sys_exit system call is equivalent to your main doing a return status; in 
higher- level programming languages. This will cause the program to exit. It takes 
a single argument, the status code, that is stored in ebx, as shown in Table 4.3.

A call to sys_exit begins by loading values into the registers eax and ebx, as 
shown in the following example:

mov eax, 1          ; system function (sys_exit)
mov ebx, 0          ; return 0;
int 0x80            ; call kernel

Printing a String
Printing a string requires turning certain pins on and off on the processor. By 
making a system call, an assembly program can offload the work of determining 
which pins to turn on and off to the operating system. The OS informs the 
graphics card, which selects its bits to turn on and off. This sends information to 
the monitor microcontroller, causing it to turn its pins on and off, which draws 
on the screen. Along the way, dozens of other controllers may be involved in 
the process as well.

An assembly program that prints a string and then exits would use both the 
sys_write and sys_exit system calls. We’ll get into the overall file syntax in 

Table 4.3: sys_exit

REGISTER VALUE DESCRIPTION

eax 1 sys_exit identifier

ebx int Status code
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the next section. For now, as a way to get you excited and on the edge of your 
seat as you read the next section, here’s a sneak peek. The following example 
prints the message “Hello, world!” to the console:

global _start
 
section .text
_start:
    mov eax, 4 ; write
    mov ebx, 1 ; stdout
    mov ecx, msg
    mov edx, msg.len
    int 0x80
 
    mov eax, 1 ; exit
    mov ebx, 0
    int 0x80
 
section .data
msg:    db  "Hello, world!", 10
.len:   equ $ -  msg

Building and Linking

Reverse engineering and cracking are about understanding someone else’s  
existing assembly code. However, you will find that if you do any type of patching/ 
cracking, writing your own assembly and reverse engineering is much easier if 
you understand how the process works in the other direction, writing, building, 
and assembling your own assembly code. Building and linking is a crucial step 
in this process of moving from assembly code to a functional application.

Building and Linking in Linux
The process of building and linking assembly code varies based on the operating 
system, so this section focuses on Linux. In a Linux environment, we traditionally 
name assembly files with an .asm extension like program.asm. The program can 
then be assembled, linked, and executed using the following three commands:

nasm - f elf program.asm
ld - melf_i386 program.o - o program.out
./program.out

The first of these commands uses the Netwide Assembler, nasm, to assemble 
the code into an object file. The - f flag specifies the format, which is ELF, a Linux 
executable file. The output will be an object file named program.o.



 Chapter 4 ■ Building and Running Assembly Programs 49

The next step in the process is linking, which will use ld, the GNU linker. 
The - melf_i386 specifies the architecture that should be used for linking and 
specifies that this should be an ELF binary using i386 (x86). The - o flag specifies 
the output filename, which will be program.out.

After linking is complete, the file program.out is a fully functional Linux 
executable. This executable can be run using the command ./program.out.

Writing an Assembly Program
The previous example demonstrates how to build and link an assembly program 
in Linux. However, before this can occur, you need to have written a program 
in assembly! This section covers the core concepts needed to do so.

Sections and Stat

The following example shows the overall structure of an assembly file:

section .text ; section for code
global _start ; exports start method
_start:       ; execution starts here
 
; code here
 
section .data ; section for data
 
; variables here

An assembly source file is broken up into a couple of main sections. The 
.text section contains the actual assembly code. This section will begin with 
the command global _start, which exports the _start label, telling external 
programs where to begin running your code. After that comes the _start label, 
which indicates the memory address of the first instruction in the program. The 
remaining code would follow this first instruction.

After the .text section is the .data section, which contains data that the 
assembly program will need to run. A common example of data within an 
assembly program is the variables defined within that program.

Labels

The _start label is vital to the function of an assembly program, but it is also 
possible to define other labels. Including the text label: in the code would 
create a label named label, which is a constant value synonymous with that 
location in memory.
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After a label has been defined, it can be used in lieu of a traditional memory 
address. Labels can be used anywhere a constant or immediate value could 
be used. The following examples show equivalent instructions with and 
without labels:

mov eax, [ label ]         ; access the dword stored at the label
mov eax, [ 0x1000 ]        ; if the label was on data at address 0x1000, 
; this is equivalent to the previous instruction
 
jmp label2                 ; jump to the code at the label2
jmp 1337h                  ; if the label2 was on code at address 1337h,
; this is equivalent to the previous instruction

Labels are used only to make assembly code easier to read and write. After 
the code has been built, the word label will be replaced with the equivalent 
memory address by the assembler and linker.

Constants

Constants make it easier to work with data. So, for example, instead of recalling 
that the maximum size of a buffer is 1000, it is much easier to define a constant 
named MAX_SIZE with a value of 1000.

Constants can be defined in x86 assembly using the EQU directive. For example, 
the constant MAX_SIZE can be defined with a value of 1000 with the command 
MAX_SIZE EQU 1000.

Global Data

nasm makes it possible to declare space for global data of various sizes. Some 
commands include the following:

 ■ db: Reserve space for one byte.

 ■ dw: Reserve space for one word (two bytes).

 ■ dd: Reserve space for one dword (four bytes).

 ■ dq: Reserve space for one qword (eight bytes).

The following example shows some instructions that use these commands to 
allocate various types of data:

db 0x01       ; store the value "1" in a single byte
db 1, 2, 3    ; store the array 1, 2, 3 as 1 byte elements
db 'a'        ; store the ascii value of 'a' in one byte
db "hello", 0 ; store the nul terminated string "hello"
dw 0x1234     ; store 0x1234 as a two byte value
dd 0xdeadbeef ; store 0xdeadbeef as a four byte value
dq 1          ; store 1 as an 8 byte value
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Storing data in memory provides no benefit unless that data can be accessed 
later. Typically, when defining global data, a label is assigned to it as well to 
enable it to be referenced in the code.

The following example shows a simple assembly program that defines space 
for a dword with value 0, labels it as i, and places the value 1 in it.

section .text
mov dword [ i ], 1
section .data
i: dd 0

In this example, it’s important to note that i is not a variable, it’s a symbol 
created with a label. The use of i in the code is the same as using the memory 
address of the allocated data.

Strings

A string is defined in assembly as a sequence of bytes, with each character tak-
ing up a single byte. For example, the word “hello” can be stored in memory 
using the command label: db “hello” and referenced in the code as label.

When working with strings in assembly, it is important to note that they are 
not null- terminated by default. To explicitly null terminate the string, add a null 
(0x0) byte to the end as in label: db “hello”, 0. Null termination is used in 
almost all programming languages to store strings; however, the compiler has 
been doing this for you. Now that you wield the assembly power, you will need 
to do it manually, so any functions that use strings will correctly execute. Without 
a null terminator at the end of a string, string- based functions will continue to 
grab memory after the intended string and try to use or print it as a character. 
This has an unpredictable outcome, as benign as printing some unprintable 
characters, to as severe as crashing a program by trying to pull from memory 
it doesn’t have permission to use.

times

The times prefix can be used to specify that a particular instruction or prefix 
should be repeated a certain number of times. This can be helpful for creating 
fixed- length buffers and other applications, as shown in the following examples:

times 100 db 0   ; create 100 bytes, initialized to 0
 
times 64 db 0x55 ; create 64 bytes, each initialized to 55h
 
; pad "hello world" to a length of 64
buffer: db      'hello, world' times 64- $+buffer db ' '
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$

$ is shorthand for the address of the current line. It can be used similarly to a 
label, as shown in the following examples:

jmp $                ; Infinite loop
 
string: db "hello"
length EQU $- string  ; Calculate length of string on previous line

In this example, length is an example of a variable name. The value of length 
is set to the current address ($) minus the address indicated by the label string. 
Since length sits right after the string, that effectively takes the address after 
“hello” and subtracts the address at the start, giving you a length of the string 
“hello”.

 N OT E   Prefixes like times and $ are specific to nasm and will not show up in the 
built code. Different assemblers may have different shortcuts.

objdump

Tools like nasm and ld are used to create an executable from assembly code. Object 
Dump (objdump) is a Linux tool that reverses this process, taking an executable 
and dumping its assembly code. While we will introduce increasingly stronger 
tools as we progress through the book, we’re starting with objdump because it’s 
on every Linux- based system and provides a good foundation.

objdump can dump the assembly code of any application running on Linux. 
As a result, it has a number of possible configuration options. But the two most 
important when getting started with reverse engineering include the following:

 ■ - d: Instructs objdump to disassemble the content of all sections

 ■ - Mintel: Specifies that the assembly output should be shown in Intel 
syntax (sadly, it uses AT&T by default)

Taking this into account, the syntax for disassembling a program named appname 
is objdump - d - Mintel appname. Some sample output for this is shown here:

804a030 <test_key>:

804a030 55 push ebp

804a031 89 5e mov ebp, esp

804a033 53 push ebx

804a034 83 ec 14 sub esp, 0x14
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objdump’s output is organized into three columns. The first column contains 
memory addresses, which are the virtual addresses where the instructions will 
be located when the code is run. The second contains the x86 machine code at 
that location, and the third holds the x86 assembly code equivalents of that 
machine code.

The main exceptions to this layout are labels, as shown at the top of the pre-
ceding table. This label contains a name. Note that the address associated with 
the label is the same as that of the first instruction in the code; a label doesn’t 
consume any memory space.

Lab: Hello World

It ’s  now time for the second lab exercise.  Please navigate to 
the book’s GitHub at h t t p s : / / g i t h u b . c o m / D a z z l e C a t D u o / 
X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES and 
find the “hello world” lab.

Skills
This lab provides an opportunity to learn to write and build x86 code applica-
tions. Some of the key skills that will be tested include the following:

 ■ Registers

 ■ Memory

 ■ Instructions

 ■ Systems calls

 ■ Building and linking x86 assembly

This lab also provides hands- on experience with a few different tools, including 
the following:

 ■ nasm

 ■ ld

 ■ Makefiles

 ■ objdump

Takeaways
Applications are fundamentally composed of some form of assembly instruc-
tions. Usually, on a PC, this is x86, but sometimes it might be a JIT language or 
intermediate language (IL).

Understanding how to create programs in this low- level language provides 
insight into how to take them apart as well. When cracking programs, the ability 

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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to write x86 can be invaluable for developing patches to circumvent software 
protections.

ASCII

The American Standard Code for Information Interchange (ASCII) and Unicode 
Transformation Format (UTF) are both standards that define how computers 
represent text. In fact, ASCII is a subset of UTF- 8.

ASCII was developed in 1960 and uses seven bits to represent each character. 
Figure 4.2 shows a full ASCII table.

The ASCII standard can support the following types of characters:

 ■ Digits (0–9)

 ■ Lowercase letters (a–z)

 ■ Uppercase letters (A–Z)

 ■ Common punctuation

An understanding of ASCII is useful for reverse engineering because it is 
how strings are likely to be represented within assembly code and memory. For 

Figure 4.2:  ASCII table
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example, the string “Hello, world” is stored in memory as 0x48, 0x65, 0x6C, 
0x6C, 0x6F, 0x2C, 0x20,0x77, 0x6F, 0x72, 0x6C, 0x64.

Identifying ASCII Strings
One of the challenges when reverse engineering is identifying if a series of 
bytes is an ASCII string, a number, or something else. For example, the series 
of bytes 0x48, 0x65, 0x6C, 0x6C, 0x6F, 0x2C, 0x20, 0x77, 0x6F, 0x72, 0x6C, and 
0x64 could be the string “Hello, world”; the values 1,819,043,144; or any of 
many more possibilities.

 T I P   The difficulty of identifying ASCII strings is why tools like strings often return a 
lot of garbage. They just look for a series of bytes that could be interpreted as a string 
of printable characters.

The only way to know for certain that a series of bytes is a string is to look at 
how it is used by the program. If the bytes are passed to a function that inter-
prets them as a string, then they are likely a string.

In many languages, a helpful sign of a string is a series of printable bytes 
terminated by a NULL character. In fact, because there is nothing to tell the pro-
cessor where a string starts or stops, if a string forgets its null terminator, the 
process will just keep reading characters until it reaches a problem!

For example, the following program will print “hello” followed by the 16 Bs 
and then continue reading and printing memory until it reaches a NULL byte.

#include <stdio.h>
int main()
{
       char mybuffer[16];
       for (int i = 0; i < 16; i++)
       {
              mybuffer[i] = 'B';
       }
       Printf("hello %s\n", mybuffer);
}

Figure 4.3 shows the output of this code.

ASCII Manipulation Tip
The ASCII standard is designed so that capital and lowercase letters are always 
separated by 0x20, as shown in Figure 4.4. In higher- level programming languages, 

Figure 4.3:  Program output
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a toUpper function will simply add 0x20 to the value of a lowercase letter, and 
a toLower function will simply subtract 0x20.

Summary

This chapter explores how assembly programs are put together in a forward 
direction. This includes how they interact with the outside world, the process 
of building and linking them, and how they manage strings.

Understanding these processes in the forward direction can be invaluable to 
understanding how it works in reverse. If you know how assembly code moves 
from code to executable, you have a better understanding of how to take it apart 
and put it back together again.

Figure 4.4:  ASCII uppercase and lowercase values
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Assembly instructions commonly include destination registers where the result 
of an operation will be stored. However, some instructions can have effects 
beyond those recorded in this destination register.

x86 uses condition codes to track these effects. This chapter explores these 
condition codes and describes the main ones you need to understand to effec-
tively reverse engineer x86 applications.

Condition Codes

Most architectures, including x86, need a means of tracking the basic properties 
of previous operations. For example, when evaluating an if statement, the 
program needs to evaluate the condition and then act on its result. The ability 
to track state information across instructions is essential to the ability to perform 
this and similar operations.

To store this state information, the computer has a special-purpose register 
(SPR) called flags. On a 32-bit system, this is called the eflags register, while 
the 16-bit and 64-bit versions are called flags and rflags, respectively.

Understanding Condition Codes
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eflags
The eflags register is composed of a set of flags, each of which is represented 
by a single bit. Each bit can be set to true (1) or false (0).

The eflags register is broken up into three types of flags.

 ■ Status flags: Status flags represent the status of some operation such as 
whether the previous operation evaluated to zero.

 ■ Control flags: Control flags affect how the processor operates, such as 
enabling and disabling interrupts.

 ■ System flags: System flags reflect the state of the processor, such as whether 
the system is virtualized.

With 32 bits in the eflags register, a significant amount of state information 
can be stored in these bits. For reverse engineering, only some of the status 
flags are significant.

Of the status flags, four are significant to reverse engineering; these include 
the carry, zero, sign, and overflow flags.

Carry Flag

The carry flag (CF) is bit 0 of the eflags register. It specifies whether the last 
arithmetic operation resulted in a carry.

A carry indicated that an addition carried a 1 out of the highest bit or a sub-
traction borrowed a 1 into the highest bit. For example, consider the following 
calculation, which would cause the carry bit to be set:

                     unsigned         signed
  0011 0000                48             48
+ 1110 0000             + 224          + -32
1 0001 0000                16             16

Recall that there is nothing inherent about binary to indicate what the value 
is; it’s all in how it’s used or interpreted. So, the binary representation in this 
example could be interpreted as an unsigned value or signed. Signed, as you 
can see, means the option of negative or positive, whereas unsigned means 
always positive.

In this example, if you trace the addition, you can see the left-most column, 
carried out a 1. Looking at the signed versus unsigned values, you can see that 
for unsigned, the carry flag represents an overflow, meaning the result was too 
big to store in the size (in this case we’re looking at 1 byte). And this is how it is 
traditionally used, to identify overflows/underflows in unsigned math. If the 
carry condition is met, then the CF is set to 1.
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Zero Flag

The zero flag (ZF) is bit 6 of the eflags register and indicates whether the last 
arithmetic operation ended in a zero. For example, the following calculation 
would set the zero flag:

  0100 0000           64
-  0100 0000         -  64
  0000 0000           00

The zero flag is easier to reason about, in that the answer is simply all zeros. 
There is no interpretation difference between signed or unsigned. If the result 
is a 0, then the zero flag is set to 1.

Sign Flag

The seventh bit of the eflags register, the sign flag (SF), specifies whether a sign 
bit was set as a result of the previous arithmetic operation. In signed numbers, 
the sign bit is the high bit of the register used.

For example, in the instruction add ax, bx, the sign bit is bit 15 of ax. In the 
instruction sub bl, dl, the sign bit is bit 7 of bl. If the bit is set, it’s consid-
ered negative, and if it’s not, it’s positive. In the case of the sign bit being set, 
the SF will be set to 1. If the top bit of the result is set, we know it’s a negative 
number, but it’s not as simple as then using our normal translation to decimal 
on the remaining bits to get the value. If a number is negative, it’s stored in 
“two’s complement” format, which requires some more massaging to get back 
to its true value.

Overflow Flag

The overflow flag (OF) is the eleventh bit of the eflags register and states 
whether the previous arithmetic operation resulted in an overflow. An over-
flow happens when the carry into the highest bit doesn’t match the carry out. 
Just like the carry flag is useful for unsigned math, the overflow flag is used for 
signed math to detect when something didn’t go right.

Often, this indicates one of two cases:

 ■ Positive + Positive = Negative

 ■ Negative + Negative = Positive

For the first case, consider the following calculation:

  0101 0000           80
+ 0101 0000         + 80
0 1010 0000          - 96
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In this calculation, two positive values are added together. However, the result 
sets the sign bit, indicating a negative number. Tracing this column by column 
in its binary form, you will see that a 1 is carried into the left-most column, but 
nothing is carried out (i.e., a 0 is carried out). This means the carry in did not 
match the carry out, and as you can see in its decimal format, we got an incor-
rect negative value as the result.

For an example of the second case, consider the following:

  1000 0000          - 128
+ 1011 0000         + -80
1 0011 0000            48

In this case, two negative numbers are being summed. However, the overflow 
causes the result to be a positive value. Again, tracing this at a binary level, we 
can see that there is no carry into the left-most column, but there is a carry out, 
so the carry in does not match the carry out. When looking at this in the decimal 
form we see we get an incorrect positive value.

Other Status Flags

While these four are the most important status flags, they are not the only ones. 
Some of the other, less important flags that are still worth knowing include the 
following:

 ■ Adjust (AF): Indicates that the last arithmetic results in a carry out of the 
lowest 4 bits (used for BCD arithmetic)

 ■ Trap (TF): Enables CPU single-step mode, which is used for debugging

 ■ Interrupt Enable (IF): Enables the CPU to handle system interrupts

 ■ Direction (DF): Sets the direction of string processing from right to left

 ■ Parity (PF): Indicates that the last arithmetic/logical operation results in 
even parity (even number of 1s in lowest byte)

Operations Affecting Status Flags
Status flags can be affected by various operations. Four examples include add, 
sub, cmp, and test.

add

The add instruction has the potential to modify the carry, zero, sign, and over-
flow flags. For example, the instruction add al, bl can trigger different combi-
nations of flags dependent on the values stored in al and bl. Figure 5.1 shows 
the results of five different add operations.
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Note the effect that the use of signed or unsigned integers has on the interpre-
tation of the values and their correctness. For example, the second add operation 
has a correct result for signed values but an incorrect one for unsigned values.

sub

The sub instruction also has the potential to modify the same flags as add, 
which is all four significant status flags. Figure 5.2 shows the various results of  
sub al, bl with different values of al and bl.

As with the add operation, the correctness of the result of sub depends on the 
values stored in al and bl. For example, both versions of the first example are 
correct, but only the signed version of the second has a correct result.

cmp

The cmp instruction is designed to compare two values, which can be memory, 
constants, or register. It works by subtracting the second operand from the first 
operand. However, the result of the subtraction is discarded, but the flags are 
adjusted.

The goal of cmp is to determine whether one value is greater than, less than, 
or equal to another. Consider the following example where eax < ebx:

mov eax, 0x100
mov ebx, 0x200
cmp eax, ebx  ; evaluates eax- ebx

Figure 5.1: Effects of add al,bl with various inputs



62 Chapter 5 ■ Understanding Condition Codes

The final instruction here is a subtraction, which would result in a negative 
value since ebx is greater than eax. As a result, the sign flag would be set to 
1 (indicating a negative result), while the zero flag would be set to 0 (i.e., the 
result is not zero).

In another example, the value of the first operand, eax, may be greater than 
that of the second operand, ebx.

mov eax, 0x300
mov ebx, 0x200
cmp eax, ebx  ; evaluates eax- ebx

In this case, the result of the subtraction would be a positive value. As a result, 
both the sign and zero flags would be zero.

The final potential case for cmp is if the two operands are equal, as shown here:

mov eax, 0x500
mov ebx, 0x500
cmp eax, ebx  ; evaluates eax- ebx

If the operands are equal, the result of the subtraction is zero, which would set 
the zero flag but not the sign flag. Figure 5.3 shows a truth table summarizing 
the impacts of cmp operations on the sign and zero flags.

Figure 5.2: Effects of sub al, bl with various inputs
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test

The test instruction performs a bitwise and between the two operands, which 
can be memory, constants, or registers. Like cmp, the result of the operation is 
discarded, but the values of flags are adjusted.

The test instruction is commonly used to check if one or more specific bits 
are set within a value by checking the zero flag. For example, the following 
instructions check if bits 0 or 2 are set:

mov ax, 0x1450
test ax, 0x05 ; check if bit 0 or 2 is set (0x5 is 0000 0101 in binary)

These instructions are equivalent to performing the following mathematical 
operation:

  0001 0100 0101 0000      (0x1450)
& 0000 0000 0000 0101      (0x0005)
  0000 0000 0000 0000

The result of this and operation is zero, which would cause the zero flag to be 
set. This indicates that neither bit 0 nor bit 2 was set.

The following instructions perform the same test when the value 0x1451 is 
placed in ax:

mov ax, 0x1451
test ax, 0x05 ; check if bit 0 or 2 is set

These instructions are equivalent to the following calculation:

  0001 0100 0101 0001      (0x1451)
& 0000 0000 0000 0101      (0x0005)
  0000 0000 0000 0001

In this case, the result of the and operation is nonzero, so the zero flag is not set. 
This indicates that at least one of the two bits was set.

 T I P   The test instruction can be used to determine whether a number is 
even or odd.

Figure 5.3: cmp truth table
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Summary

Condition codes are used to record some of the effects of an operation that 
might not show up in a destination register. For example, a condition code may 
indicate if an operation resulted in a zero or caused an overflow. Tracking these 
condition codes is essential to understanding the current state of an application 
when reverse engineering it.
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Earlier chapters focused on the theory and fundamentals of reverse engineering. 
Learning how x86 works and common instruction formats is essential to success.

This chapter takes a hands- on approach to reverse engineering and software 
cracking. It introduces gdb, a powerful debugger, and explores some important 
tips and tricks for software reverse engineering and cracking.

Binary Analysis

Analyzing existing executables makes up a great deal of reverse engineering. 
Binary analysis can be accomplished in a few different ways, including static 
and dynamic analysis and debugging.

Static and Dynamic Analysis
A program’s functionality can be analyzed in a few different ways. Two of the 
main techniques are static and dynamic analysis.

Static analysis involves analyzing the source code without ever running it. 
Static analysis has a few advantages, including the following:

 ■ Good starting point for further analysis
 ■ Risk- free method of analyzing potential malware

 ■ No need for access to specialized architectures

Analyzing and Debugging 
Assembly Code
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Static analysis has its advantages, one of the biggest being it’s always an 
option. But it can be time- consuming and won’t catch everything. There will 
always be pieces of code that are meaningful only at runtime. When analyzing 
complex code, without watching the code run, it can be difficult or impossible 
to anticipate where something like a jump might go. Also, many code flows are 
dictated by the input given to the program, so static analysis isn’t enough to 
reason about where code execution will go, making it harder to analyze.

Dynamic analysis is a complementary technique that involves running the 
program and analyzing its behavior while it’s running. Some of the benefits of 
dynamic analysis include the following:

 ■ More rapid analysis

 ■ Wider detection of potential issues

Dynamic analysis can take a variety of different forms. For reverse engineering, 
one of the most common is debugging. By watching an application running, 
many of the unknowns during static analysis can be solidified (such as where 
code is most likely to jump to). However, dynamic analysis means running the 
code in question, and depending on the code, this might not always be feasible. 
It could be an excerpt from a larger application, it could require a unique exe-
cution environment that you don’t have access to, or, in the case of malware, it 
could be potentially malicious if executed.

Debugging
Recall that the goal of software reverse engineering and cracking is to under-
stand and modify existing software. Debugging is one of the fastest and most 
effective ways of accomplishing this. By dynamically analyzing a program’s 
functionality and modifying its behavior on the fly, it’s possible to collect the 
information necessary for cracking and to test potential cracks of the software.

Debugging is commonly a multistage process. The typical debug flow includes 
the following:

1. Set breakpoints on points of interest.

2. Run the code.

3. The execution pauses (“breaks”) at the breakpoint.

4. Examine the program state.

5. Optionally make modifications.

6. Repeat.

Breakpoints

Breakpoints instruct the processor to stop a program’s execution at a particular 
point. Breakpoints come in one of two forms:
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 ■ Software: Software breakpoints are set on assembly instructions and are 
unlimited in number.

 ■ Hardware: A limited number of hardware breakpoints (four in x86) can 
be set on assembly instructions or memory accesses.

In this book, early labs focus on the use of software breakpoints, with hardware 
breakpoints appearing in later labs. This book will demonstrate the use of a variety 
of debuggers, and configuring breakpoints will be different in each of them.

Software Breakpoints
Software breakpoints are the default option for most debuggers. When setting  
a software breakpoint, what actually happens behind the scenes is the debugger 
actually modifies the instruction, replacing it with a breakpoint instruction. In x86, 
this is the int3 instruction (0xcc). A software breakpoint is limited to execution, 
meaning the int3 instruction must be executed for the breakpoint to execute.

When the processor reaches the breakpoint instruction, it halts execution 
and hands control back over to the debugger. This allows a reverse engineer to 
inspect the program state and potentially make modifications.

The main limitation of software breakpoints is that they can be easily detected 
by a program that reads its own memory. Through anti- debugging, the program 
can remove the breakpoint or take other defensive actions in response to it.

Hardware Breakpoints
Most debuggers support hardware breakpoints. However, they generally must 
be manually selected and configured.

A hardware breakpoint doesn’t modify a program’s code like a software 
breakpoint does. Instead, the addresses of the breakpoints are stored in hardware 
registers.

In x86, the debug registers DR0- 7 are used for hardware breakpoints. Registers 
DR0- 4 hold the breakpoint addresses, while DR6,7 store configuration information.

Hardware breakpoints can be configured to break on executing, reading, or 
writing a specific address. When the processor detects a condition matching 
the breakpoint registers, it hands control over to the debugger.

Hardware breakpoints are useful because they can detect memory access. 
For example, a hardware breakpoint can be used to identify where in the code 
a particular byte is set or a string is used.

Hardware breakpoints are also useful to evade a program’s defenses against 
software breakpoints. If a program is scanning its own code looking for int3 
instructions, it will overlook hardware breakpoints, which don’t modify the code. 
It’s not anti- debugger proof; with advanced system knowledge, an application 
could dig deep enough to watch hardware breakpoints, but it raises the bar a 
lot over software breakpoints.
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gdb

The GNU Debugger (gdb) is the de facto standard for debugging on Linux. It 
comes installed on many Linux distros and can be installed on any of them. 
Some of the key features that gdb provides include the following:

 ■ Command- line debugger (no GUI)

 ■ Scriptable

 ■ Remote debugging support

gdb is such a ubiquitous debugger that many systems and processors include 
a gdb stub to support gdb debugging. While many debuggers are constrained 
to a few architectures and platforms, gdb works on hundreds. This book will 
explore many different debuggers and will introduce graphical user interface 
(GUI)–based debuggers later. However, it’s important to foundationally under-
stand how to use GDB, which is command line. Many “prettier” debuggers 
use GDB and its protocol under the hood; they’ve simply wrapped a pretty 
interface over it.

Debugging with gdb
As a command- line program, gdb is controlled by entering commands at the 
prompt, which displays as (gdb). While the gdb interface may seem archaic, it 
is an extremely powerful and hugely popular debugger.

One useful feature of gdb is that commands can be entered as the shortest 
nonambiguous form of the command. For example, run can be shortened to r, 
info registers to info reg, and disassemble to disas. You’ll get a feel for 
some of these as you go.

Launching gdb

gdb can be launched using the gdb command. For example, the executable 
printreg- shift.out can be launched with gdb printreg- shift.out, as shown 
in Figure 6.1.

Figure 6.1: The gdb command
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Disassembly with gdb

Recall that x86 has a few different syntaxes, including Intel and AT&T. The 
instruction to specify Intel syntax in gdb is (gdb) set disassembly- flavor intel.

After setting the disassembly flavor, there are a few different options for 
starting debugging, including the following:

 ■ disassemble starts disassembly from the current instruction pointer.

 ■ disassemble address starts disassembly at the specified address.

 ■ disassemble label starts disassembly at the specified label (loop, main, etc.).

Figure 6.2 shows an example of disassembly using a label, where the desired 
code segment begins with the loop label. The image on the left is the original 
assembly source code, and the right half of the image shows the equivalent 
disassembly in gdb.

After specifying a starting point, it’s possible to specify a certain number of 
instructions to disassemble. For example, the command disassemble main +50 
will start disassembly at the main label and print 50 instructions.

Starting and Stopping Code in gdb

The run command is used to execute the program from the very beginning. 
This will discard any state information from running the program to this point.

The continue command is used to resume execution after pausing. For example, 
a breakpoint could be used to stop execution to view the program stack, fol-
lowed by a continue command to resume.

Program execution can be terminated with the quit and kill commands. 
kill terminates the running process, while quit does so and leaves gdb.

gdb Breakpoints

Breakpoints halt code execution to allow analysis of the program state. In gdb, 
the break address command specifies a breakpoint at a particular address, 

Figure 6.2: Disassembly in gdb
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Figure 6.3: Setting a breakpoint in gdb

while break label uses a label to indicate the desired breakpoint location, as 
shown in Figure 6.3.

gdb info Commands

The info command in gdb can be used to access various types of information. 
Some common info commands include the following:

 ■ info files: Shows the various parts of the disassembled file. Figure 6.4 
shows an example for a simple executable named a.out.

 ■ info breakpoints: Lists the currently defined breakpoints for the disas-
sembled program.

 ■ info register: Displays the current values of the x86 registers as shown 
in Figure 6.5.

 ■ info variables: Shows all defined variables in the application as shown 
in Figure 6.6.

In addition to the info register command, it is also possible to print the 
values of individual registers with the print $reg command, as shown here:

(gdb) print $esp
$1 = (void *) 0xffffd260
(gdb)

Figure 6.4: gdb info files command
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Stepping Through Instructions

The run and continue commands simply start the program running again until 
something forces execution to stop such as a breakpoint. This makes it more 
difficult to watch what the program is doing or how variables change over time.

The stepi command steps one instruction at a time, as shown in Figure 6.7, 
allowing more in- depth analysis. Note that comments are shown because the 
application was built in debug mode.

Figure 6.5: gdb info register command

Figure 6.6: gdb info variable command

Figure 6.7: gdb stepi command
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 N OT E   Debug information, such as function/variable names, comments, etc., can 
be enabled when compiling using a debug flag, which is supported by most compilers. 
For example, in gcc/g++, this is the - g flag. However, this is rarely found when reverse 
engineering a commercial executable.

If the next instruction to execute is a function call, stepi will follow the call 
into the called function. In many cases, this is undesirable, especially if the 
function is well- understood. For example, knowing that an instruction will print 
a string is enough information, and there is no need to inspect each instruction 
within the printf function.

The nexti command makes it possible to step over a function call. This will 
execute the function call and advance to the next visible instruction.

Examining Memory

In gdb, the x command (for “eXamine memory”) can be used to examine memory. 
The syntax of the command is x/nfu addr.

In this command, n, f, and u are optional parameters with the following 
meanings:

 ■ n: Specifies the number of units (u) of memory that should be displayed

 ■ f: Specifies the display format

 ■ s: Null- terminated string

 ■ i: Machine instruction

 ■ x: Hexadecimal (default)

 ■ u: Specifies the unit size

 ■ b: Bytes

 ■ h: Halfwords (two bytes)

 ■ w: Words (default)

 ■ g: Giant words (eight bytes)

Figure 6.6 showed a variable named byteToPrint, which was located at the 
address 0x080490e4. To display 16 bytes of memory at this location, the command 
would be x/16x 0x80490e4, as shown in Figure 6.8. The output of the command 
shows that the byte of interest has a value of 0x41, which is A in ASCII.

Figure 6.8: gdb x command
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In addition to using memory addresses, the x command can also use regis-
ters to specify the dump location. For example, Figure 6.9 shows an example of 
dumping 10 bytes in hex format at the location specified by esp.

Segmentation Faults

Segmentation faults, or segfaults, occur when the CPU attempts to read or write 
an inaccessible memory location. This could happen because the indicated 
location doesn’t exist or the CPU lacks the permissions necessary to access or 
modify that memory location.

For example, the command mov eax, [0x00000000] will always result 
in a segfault. The reason for this is that address 0x0 is typically not mapped  
or accessible by an application, so a read from memory address 0x0. gdb will 
cause a segfault to occur.

Segfaults can occur for a variety of different reasons. When exploiting software, 
a buffer overflow can cause a segfault. When cracking software, segfaults can 
happen if a program is incorrectly patched or errors are made when modifying 
execution during debugging. As you start to get into writing and manipulating 
assembly code, you will become good friends with segfault. Keeping a stress 
ball nearby that you use every time you see a segfault can be therapeutic when 
cracking. As a silver lining, when hooked to GDB, as a segfault occurs, gdb will 
show the line that caused it, which is helpful for tracking down where the code 
went haywire.

Lab: Shark Sim 3000

This lab provides a warm- up reverse engineering challenge. The applica-
tion is intentionally designed so that its behavior is nonobvious. Experience 
deciphering and analyzing programs like this are the foundation of software 
cracking.

Head to the book’s GitHub page (https://github.com/DazzleCatDuo/ 
X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES) and 
locate the Shark Sim 3000 lab.

Figure 6.9: Printing 10 bytes with the gdb x command

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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Skills
This lab is designed to test foundational skills in reverse engineering, including 
the ability to take apart and understand an unknown program. Some of the 
skills being tested include the following:

 ■ ASCII

 ■ Condition codes

 ■ Debugging compiled programs

 ■ Deciphering unknown assembly instructions and programs

Takeaways
Debugging is an invaluable tool in reverse engineering an application. A 
fundamental part of reverse engineering is deciphering new instructions— 
there’s not always enough time to understand everything!

One of the secrets to success in reverse engineering is to not get caught up on 
unknown assembly instructions. Try to quickly understand the basics of what 
they are doing, so you can proceed. In future chapters, you’ll keep working with 
gdb and other more powerful debuggers. Now that you’ve started to modify 
assembly, you can progress to doing it without any source at all.

Tuning Out the Noise

Effective reverse engineering and software cracking requires proficiency in a 
few different skill sets. However, one of the most important is the ability to tune 
out the noise and focus on what matters.

Even small programs contain too much code to analyze everything. The vast 
majority of the instructions have no relevance to the core application features 
and are a waste of time to reverse engineer. Often, knowing what to focus on 
is less important than knowing what not to focus on.

When determining what to focus on and not focus on, understanding the 
basics is essential. Some extremely common code that should be immediately 
recognizable includes the following:

 ■ Control flow constructs

 ■ Stack layout (local variables, incoming parameters, and outgoing 
parameters)

 ■ Compiler boilerplate (prologues/epilogues, canaries, stack allocation, 
and register management)

These will all be explored in detail in the upcoming chapters to make you a 
pro at recognizing them quickly.
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There is an order of operations to follow when prioritizing reverse engineering 
efforts: function calls ➪ control flow ➪ instructions ➪ boilerplate.

 ■ Function calls: Focus on determining what functions are called. Often, 
knowing that a function calls CreateDialog is enough to understand its 
purpose.

 ■ Control flow: If necessary, explore the control flow, such as determining 
that CreateDialog is called in a loop within that function.

 ■ Individual instructions: If that is not enough, examine individual 
instructions.

 ■ Compiler boilerplate: Examining boilerplate is almost never useful to 
software RE or cracking. However, it’s important to understand typical 
boilerplate so that it can be quickly identified and ignored.

Summary

This chapter introduced gdb, a powerful and widely used debugger for Linux 
systems. Gaining familiarity and hands- on experience with gdb is important for 
an aspiring reverse engineer or cracker since this tool can be used to analyze 
software for a wide variety of different systems.
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7

A program is a series of instructions, and an application may not move linearly 
from one instruction to the next. When reversing and cracking an application, 
it’s vital to understand control flows and the various factors that can affect them, 
such as if statements and loops in higher-level languages.

When reversing a function in x86 or a higher-level language, you’ll likely run 
into functions as well. This chapter also explores how functions work in x86 
and their effects on the program stack.

Control Flow

So far, the assembly code that has been explored in this book has followed a 
sequential stream of instructions. Execution simply continues from top to bot-
tom. However, most applications are not completely sequential. Consider the 
following code block:

if (x) {
       // Do something
}

When executing this code, the processor will evaluate the condition, x, and 
determine whether it is true. If so, it moves on to the instructions within the 
if block.

Functions and Control Flow
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However, if the condition, x, is not true, then the instructions within the if 
block are skipped. This requires the ability to tell the processor to execute some 
instructions and not others, changing the flow of execution.

The Instruction Pointer
The eip register is known as the instruction pointer and holds the address of 
the next instruction to execute. The processor will automatically increment the 
value stored in eip after an instruction is executed.

Allowing eip to be incremented after each instruction makes it possible to 
run a sequential series of instructions. However, in some cases, we want to 
conditionally execute code. This requires a different updating of eip. However, 
eip can’t be manipulated directly (recall it’s a special-purpose register [SPR]). 
Instead, control flow instructions are used to adjust eip.

Control Flow Instructions
The most common deviations from the normal execution flow that force changes 
to eip are known as jumps or branches. For example, the following code block 
has a branch at the if statement:

int x = 1;
int y = 2*x;
if (!y) { // branch!
    x = 2;
}

When high-level code like this is assembled, jump instructions are used to 
indicate what the eip register should be set to. A jump instruction has the syntax 
jmp op, where op can be a memory address or a label.

The jmp instruction is a nonconditional jump that is always followed (conditional 
jumps are covered later in this chapter).

jmp

The jmp instruction has the syntax jmp op. Its purpose is to transfer the program’s 
control flow to the memory location op by setting eip to the value stored in op.

Some examples of jmp instructions include the following:

jmp eax       ; Copies eax into eip (branches to eax)
jmp label     ; Branches to the instruction at label
jmp $         ; An infinite loop in nasm(valuable 
              ;debugging tool in assembly)
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jmp instructions can be used to implement various functions. For example, 
the following instructions count up from zero in an infinite loop:

      mov eax, 0
loop: add eax, 1
      jmp loop

Conditional Jumps

Conditional jumps are a way to tie whether or not a jump is taken to a condition 
being either true or false. This determines whether a jump should be performed 
based on the values stored in the status flags. For example, consider the fol-
lowing instructions:

cmp eax, ebx
jle done

The jle (jump less than or equal to) instruction will jump to the specified 
address or label if the flags register indicates that a previous comparison resulted 
in a less than or equal to. In this case, the instruction right before it (cmp) is being 
used to compare eax and ebx and set the flags. Recall that cmp takes operand 
1 minus operand 2 and throws away the result. So, to get a less than or equal 
to condition, eax would need to be less than or equal to ebx. In this case, the 
processor will jump to the label done. Otherwise, the jump will be skipped, and 
execution will continue to the next instruction after jle.

Numerous conditional jump instructions exist in the x86 language. Table 7.1 
lists these instructions and the conditions that determine whether the jump is 
performed.

Table 7.1: x86 conditional jump instructions

INSTRUCTION MEANING CONDITIONS

je Jump if equal. ZF = 1

jz Jump if last result is zero. ZF = 1

jne Jump if not equal. ZF = 0

jge Jump if greater than or equal to. SF = OF

jl Jump if less than. SF != OF

jle Jump if less than or equal to. ZF = 1 OR

SF != OF

jg Jump if greater than. ZF = 0 AND

SF == OF
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Looking at the table, you might note that some instructions have identical 
conditions. For example, jz and je will both jump if the zero flag (ZF) is set 
to one. This means that the jump is performed if the two indicated values are 
equal. But logically, they’re treated as different things. “Jump if the previous 
result is zero” might be used after subtracting two numbers, whereas “jump 
equal” is more likely used after a comparison.

For example, consider the case where eax = ebx = 0x10. The instruction  
cmp eax, ebx performs subtraction and will set the zero flag if executed. Both 
the jz and je instructions will perform a jump if they follow this instruction.

These instructions can be used interchangeably, but they are typically chosen 
based on the instruction used to set the flags that determine the jump. For 
example, if the instruction sub eax, ebx is used to perform the conditional, 
then jz will likely be used since you’re looking at a zero result to a mathematical 
operation. If the instruction cmp eax, ebx is used, then je will be used because 
a comparison tests equivalence.

Remember that cmp performs subtraction behind the scenes, so it has the 
same effect on flags as the sub operation. jz and je are synonymous instruc-
tions designed solely to make assembly code more readable.

Pitfalls of Conditional Jumps

Conditional jumps use the status flags to determine whether a jump should be 
taken. But every instruction operates in isolation, and the conditional jumps 
are unaware of which compare or mathematical expression you want to do a 
conditional jump on. This can cause issues if the status flags are changed between 
the conditional instruction and the jump. While a compiler would not make 
this mix up, if you’re writing assembly, you will be forced to reason about this.

For example, consider the following set of instructions:

cmp eax, ebx
cmp edx, ecx
jle done

In this case, your intent may be for the instruction cmp eax, ebx to determine 
whether the jump is followed. However, cmp edx, ecx sets the flags last before 
the jump, overwriting the previous settings. Therefore, the jump is performed 
based on the outcome of the second compare, not the first.

With multiple cmp instructions in a row, it may be obvious that the last cmp 
instruction sets the flags for the jump. However, with other instructions, this 
may be less obvious, as in the following instructions:

cmp eax, ebx
add ecx, 1
je done
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In this series of instructions, the intent may have been to use the cmp instruction 
to set the flags for the jump. However, the add instruction also updates the status 
flags and overwrites the previous settings. Instead of jumping if eax = ebx, the 
jump is performed if the add instruction sets the zero flag (i.e., ecx + 1 = 0).

Example

Jump instructions are commonly used to implement if statements and loops. 
The following assembly code sums the numbers 0–4 using a loop:

       mov   eax, 0    ; initialize eax (accumulator) to 0
       mov   ecx, 0    ; initialize ecx (counter) to 0
 
loop:
       add   eax, ecx  ; add current iteration
       add   ecx, 1    ; increment counter
       cmp   ecx, 5    ; at 5 iterations yet?
       jne   loop      ; loop if not yet 5
 
done:

The iterator in this loop is stored in the ecx register and is initialized before 
the loop. The eax register is the accumulator register and holds the running sum.

The loop begins by adding the current loop counter to the accumulator and 
then incrementing the loop counter. This implements the desired logic of sum-
ming the values 0–4 as the loop iterates.

The branch occurs at the jne (jump not equal to) instruction in the second-
to-last line. The previous instruction is a cmp, which checks if the loop counter 
is equal to 5 and sets the status flags accordingly. If the loop counter does not 
equal 5, the jump triggers, and the eip register is set to the address indicated 
by loop, beginning another iteration. If the loop counter does equal 5, the jump 
is not taken, and the processor continues on to the done label.

Logic Constructs in x86

C/C++ and similar high-level languages have multiple logic constructs that 
cause nonsequential code execution. Some examples include the following:

if (...) { ... }
if (...) { ... } else { ... }
if (...) { ... } else if (...) { ... } else { ... }
while (...) { ... }
do { ... } while (...);
for (...; ...; ...) { ... }
switch (...) { ... }
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In assembly, these logical constructs are written using a combination of 
comparison (cmp) and jump (jmp, je, jne, jl, jle, jg, and jge) instructions. 
When code is compiled, the compiler will automatically perform the transla-
tion to assembly code.

When writing assembly code, it is necessary to perform the conversion from 
high-level concepts to assembly manually. Or when reasoning about other 
people’s code, it is essential to be able to understand how these structures look 
in assembly. To build up this recognition, focus on how you would take these 
higher-level language concepts and translate them to assembly. Accomplishing 
this is a two-step process:

1. Remove code blocks: Rewrite code replacing logical constructs with goto 
statements.

2. Assemble: Rewrite the program in assembly.

if (. . .) {. . .}
An if statement is one of the simplest high-level logical constructs. With code 
blocks, it looks like the following:

if (condition)
{
       code_if_true;
}

The first step is to remove code blocks. Code blocks are code that is nested 
inside curly braces: {}. When removing these code blocks, use goto statements, 
which tell code where to jump for execution. Not all higher-level languages have 
a concept of a goto, but focus on this as pseudocode and leverage the goto. The 
following code is the same if statement written without code blocks:

if (!condition)
       goto skip_block;
 
code_if_true;
 
skip_block:

Note that, in this version, the condition is inverted. This is because the jump 
past the if block occurs only if the condition is false, while the if block of an 
if statement specifies what happens if the condition is true. Removing code 
blocks will always involve inverting the condition.
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Converting this from pseudocode to a functional application requires replac-
ing condition and code_if_true with actual code.

WITH BLOCKS WITHOUT BLOCKS

if (x==5)

{

   x++;

   y=x;

}

if (x!=5)

     goto skip_block;

 

x++;

y=x;

 

skip_block:

After removing the code blocks, converting the code to assembly is much 
easier. Then, this can be directly mapped to their x86 equivalents.

CODE X86 ASSEMBLY

if (x!=5)

     goto skip_block;

 

x++;

y=x;

 

skip_block:

cmp dword [x], 5

jne skip_block

 

inc dword [x]

mov eax, [x]

mov [y], eax

 

skip_block:

if (. . .) { . . . } else { . . . }
Adding an else statement to an if construct increases the complexity and 
the required number of jumps. In addition to skipping over the if block if the 
condition evaluates as false, an if (...) { ... } else { ... } construct 
jumps over the else block after executing the code in the if block.

The following samples show how this logical construct appears with and 
without blocks:
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WITH BLOCKS WITHOUT BLOCKS

if (condition)

{

    code_if_true;

}

else

{

    code_if_false;

}

if (!condition)

    goto false_block;

 

code_if_true;

goto skip_block;

 

false_block:

code_if_false;

 

skip_block:

Note that the code uses two different labels in its goto statements. The label 
false_block is used to skip over the if block if the condition is false, while 
the label skip_block is used to jump past the else block after executing the if 
block. Just like before, invert the conditional statement when rewriting code 
without blocks.

Replacing the pseudocode with actual code yields the following with and 
without code blocks:

WITH BLOCKS WITHOUT BLOCKS

if (x)

{

    x++;

}

else

{

    x--;

}

if (!x)

    goto false_block;

 

x++;

goto skip_block;

 

false_block:

x--;

 

skip_block:

As before, removing the blocks makes it easier to convert the high-level code 
into assembly code.
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CODE X86 ASSEMBLY

if (!x)

    goto false_block;

 

x++;

goto skip_block;

 

false_block:

x--;

 

skip_block:

cmp dword [x], 0

je false_block

 

inc dword [x]

jmp skip_block

 

false_block:

dec dword [x]

 

skip_block:

if (. . .) { . . . } else if { . . . } else { . . . }

if statements can be made more complex and evaluate multiple different condi-
tions. The following demonstrates an if statement with else if and else with 
and without blocks. But the process still stays the same. Invert the condition, 
and add gotos.

WITH BLOCKS WITHOUT BLOCKS

if (condition_1)

{

    code_if_1;

}

else if (condition_2)

{

    code_if_2;

}

else

{

    code_if_false;

}

if (!condition_1)

    goto test_2;

code_if_1;

goto skip_block;

 

test_2:

if (!condition_2)

    goto false_block;

code_if_2;

goto skip_block;

 

false_block:

code_if_false;

 

skip_block:
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In this version of the code, multiple labels and jumps are necessary to convert 
the code to a version without blocks. Take a real-world example of this, which 
implements a grading system with an extremely heavy curve.

WITH BLOCKS WITHOUT BLOCKS

if (score>70)

{

    grade='a';

}

else if (score>50)

{

    grade='b';

}

else

{

    grade='c';

}

if (score<=70)

    goto test_2;

grade='a';

goto skip_block;

 

test_2:

if (score<=50)

    goto false_block;

grade='b';

goto skip_block;

 

false_block:

grade='c';

 

skip_block:

Note that, once again, converting to a blockless version requires flipping the 
conditions. The strictly less than statements become greater than or equal to 1. 
The following example shows how this code is then easily translated to assembly:

CODE X86 ASSEMBLY

if (score<=70)

    goto test_2;

grade='a';

goto skip_block;

 

test_2:

if (score<=50)

    goto false_block;

cmp dword [score], 70

jle test_2

mov byte [grade], 'a'

jmp skip_block

 

test_2:

cmp dword [score], 50

jle false_block
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CODE X86 ASSEMBLY

grade='b';

goto skip_block;

 

false_block:

grade='c';

 

skip_block:

mov byte [grade], 'b'

jmp skip_block

 

false_block:

mov byte [grade], 'c'

 

skip_block:

do { . . . } while (. . .);
Higher-level programming languages have a number of different loop structures, 
each of which works slightly differently. A do...while loop is guaranteed to 
perform at least one iteration before evaluating the condition that would ter-
minate the loop. The following is an example of a do...while loop with blocks:

do
{
    code;
}
while (condition);

Unlike if statements, a do...while loop evaluates its condition at the end, 
so further iterations of the loop require a jump backward. As before, this code 
needs to be rewritten without code blocks. The following shows the same  
do...while loop using goto statements instead of blocks:

loop:
 
code;
 
if (condition)
    goto loop;

Unlike an if statement, a do..while loop doesn’t invert the condition being 
tested. This is because the backward jump is performed only if the condition is 
true and another iteration through the loop is required.

Now, take a look at a version of the code using real conditions and logic.
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WITH BLOCKS WITHOUT BLOCKS

do

{

    y*=x;

    x--;

}

while (x);

loop:

y*=x;

x--;

 

if (x)

    goto loop;

Converting this code to not use blocks is relatively simple because the flow of 
instructions is largely the same. The main difference is that the while statement 
is replaced by an if and a goto.

Unlike the previous examples, most of the complexity of converting this to 
assembly lies in the complexity of the sample code, not the branches.

CODE X86 ASSEMBLY

loop:

 

y*=x;

x--;

 

if (x)

    goto loop;

loop:

 

mov eax, [y]

mul dword [x]

mov [y], eax

 

sub dword [x], 1

 

cmp dword [x], 0

jne loop

while (. . .) { . . . }
A do...while loop guarantees that a single iteration of the loop will occur before 
the condition is evaluated. A while loop evaluates the condition immediately, 
so the code within the loop may not execute at all. The following code demon-
strates a while loop with and without code blocks. A while loop can be broken 
down into an if statement and thus follows the normal pattern for converting 
an if statement.
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WITH BLOCKS WITHOUT BLOCKS

while (condition)

{

    code;

}

loop:

if (!condition)

    goto done;

 

code;

goto loop;

 

done:

Note that since the condition is evaluated at the beginning, it is inverted like 
with the if statements. The following demonstrates how this might look when 
converted from pseudocode to actual code:

WITH BLOCKS WITHOUT BLOCKS

while (tired)

{

    sleep();

}

loop:

if (!tired)

    goto done;

 

sleep();

goto loop;

 

done:

After the code is converted to remove blocks, it can be translated to x86 
assembly as shown in the following:

CODE X86 ASSEMBLY

loop:

if (!tired)

    goto done;

 

sleep();

goto loop;

 

done:

loop:

cmp dword [tired], 0

je done

 

call sleep

jmp loop

 

done:
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for (. . .; . . .; . . .) { . . . }
A for loop operates differently than a while or do... while loop. Instead of 
running a variable number of times based on a condition, a for loop includes 
a loop condition plus initializes a value and updates a value.

The for statement includes three expressions. The first of these initializes the 
loop counter. The second defines a condition for terminating the loop’s execution, 
and the third defines how the loop counter will be changed between iterations. 
The following shows this in pseudocode with and without code blocks:

WITH BLOCKS WITHOUT BLOCKS

for (expr_1; expr_2; expr_3)

{

    code;

}

  expr_1;

 

  loop:

  if (!expr_2)

      goto done;

  code;

  expr_3;

  goto loop;

 

  done:

When converting a for loop to not use code blocks, the three expressions 
in the for statement are split up across the code. The first expression is a pre-
condition that occurs only one time before the loop, and the second starts out 
the loop. The final condition, which changes the value of the loop counter, is 
executed at the end of each loop iteration.

These three expressions in the for statement are easier to understand when 
looking at real code. For example, the following code defines a loop counter, 
i, and initializes it to zero. This loop counter will be incremented by 1 in each 
loop iteration (i++), and the loop will stop running when i reaches 100.

WITH BLOCKS WITHOUT BLOCKS

for (i=0; i<100; i++)

{

    sum+=i;

}

  i=0;

 

  loop:

  if (i>=100)
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WITH BLOCKS WITHOUT BLOCKS

      goto done;

 

  sum+=i;

  i++;

  goto loop;

 

  done:

Note that, like a while loop or if statement, a for loop inverts the condition. 
Once again, this is because the condition is evaluated at the beginning of the 
loop rather than at the end as in a do..while loop.

The following shows what a for loop looks like in x86 assembly:

CODE X86 ASSEMBLY

  i=0;

 

  loop:

  if (i>=100)

      goto done;

 

  sum+=i;

  i++;

  goto loop;

 

  done:

mov dword [i], 0

 

loop:

cmp dword [i], 100

jge done

 

mov eax,[i]

add [sum],eax

inc dword [i]

 

jmp loop

 

done:

switch (. . .) { . . . }
A switch statement is a logical structure that exists in some programming 
languages to simplify conditional logic. The purpose of a switch statement is 
to execute one of several different operations based on the value of a certain 
variable. The following switch statement evaluates the value stored in op and 
prints the character representing that operation:
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typedef enum {ADD, SUB, MUL, DIV, MOD} op_t;
 
switch (op) {
    case ADD:
        c='+'; break;
    case SUB:
        c='- '; break;
    case MUL:
        c='*'; break;
    case DIV:
        c='/'; break;
    case MOD:
        c='%'; break;
    default:
        c='?'; break;
}

Any switch statement can be written using a series of if and else-if state-
ments. However, this can quickly become both complex to write and inefficient 
to execute. Because if you’re a match for the very last case, you had to execute 
every single prior comparison to determine that. The following is the equivalent 
of the previous switch statement using if and else-if statements:

if (op==ADD)
    c='+';
else if (op==SUB)
    c='- ';
else if (op==MUL)
    c='*';
else if (op==DIV)
    c='/';
else if (op==MOD)
    c='%';
else
    c='?';

Building a Jump Table

When evaluating this list of if and else-if statements, the processor needs 
to perform five checks to figure out what to do with MOD, which is very ineffi-
cient. Imagine a scenario where there were hundreds of options. . .or thousands. 
Incredibly inefficient to execute. To optimize this process, a compiler may build 
a jump table instead.

A jump table is an assembly data structure that provides a list of target addresses 
for a switch statement, as illustrated in Figure 7.1. Once a switch statement has 
determined which case is correct, it can use that case number as an index into 
the array of addresses, enabling it to jump directly to the desired code block.
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The following code illustrates what a program using a jump table might look 
like in assembly:

.section data
table:
dd target_0
dd target_1
dd target_2
dd target_3
dd target_4
 
.section text
mov eax, [op]
cmp eax, 5
jge default
jmp [table+eax*4]
 
target_0:
mov byte [c], '+'
jmp done
 
target_1:
mov byte [c], '- '
jmp done
 
target_2:
mov byte [c], '*'
jmp done
 
target_3:
mov byte [c], '/'
jmp done
 
target_4:
mov byte [c], '%'

Figure 7.1: Example jump table



94 Chapter 7 ■ Functions and Control Flow

jmp done
 
default:
mov byte [c], '?'
jmp done
 
done:

It begins with the jump table, which contains the addresses of the various 
code blocks in memory. Each of these code blocks, labeled as target_x, moves 
the appropriate character into byte [c] and then jumps to the done label.

In between the table and the target code blocks is the code that actually 
implements the switch statement under the .section text heading. This code 
begins by moving op into eax. It then checks if op is greater than or equal to 5. 
If so, it jumps to the default case.

If the value of op is less than 5, it maps to one of the targets. By using it as 
a lookup into the jump table, the processor can retrieve the address of the 
corresponding code block and jump to that location to execute the code.

In this case, using the jump table, the execution time is the same regardless 
of which case it is. The last case doesn’t take any more instructions or compar-
isons than the first.

Missing Cases

A jump table assumes that the cases cover a continuous range of values. For 
example, in the following code sample, a switch statement has the cases 1, 2, 
4, and 5. In this scenario, the missing 3 can be a problem. Something needs to 
go in the third spot in the jump table.

switch (x) {
    case 0:
        ...
    case 1:
        ...
    case 2:
        ...
    case 4:
        ...
    default:
        ...
}

Missing values in a jump table can be filled with the default address or done 
if there is no default, as shown next. This will cause the processor to jump to the 
proper location when op equals 3, and it attempts to jump to the corresponding 
location in the jump table.
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JUMP TABLE

target_0

target_1

target_2

default

target_4

Nonzero Bases

A jump table is designed to have a set of cases that start at 0. However, a switch 
statement may have nonzero case values, as shown in the following code sample:

switch (x) {
    case 'a':
        ...
    case 'b':
        ...
    case 'c':
        ...
    case 'd':
        ...
}

In this case, it’s necessary to find a way to zero the cases. With ASCII, it’s 
necessary to find the lowest case in the jump table that, for this example, has a 
value of a, or 97. When implementing a jump table for this switch statement, 
the code can use an offset, accessing values as table[x-97]. In the following 
jump table, target_a will point to case a of the switch statement.

JUMP TABLE

target_a

target_b

target_c

target_d

Impractical Jump Tables

A compiler will use these tricks to improve code efficiency, and you can too 
when writing code by hand. However, sometimes a jump table just won’t work. 
For example, consider the following code:

switch (x) {
    case 1:
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        printf("this is the beginning."); break;
    case 1000:
        printf("this is the end."); break;
}

A jump table for this switch statement would need to have 1,000 entries and 
998 of them would point to the done label. In this case, an if/else statement 
is the more efficient option.

That’s not the only case where it’s impractical; a larger jump table with hun-
dreds of cases, or a table that uses an index that can’t easily be zeroed or has too 
many gaps in the table, can be impractical. But as you both write and dissect 
assembly code, it’s important to be able to understand these structures and 
how they’re used.

Continue
Some higher-level languages include the continue keyword. continue is used 
inside a loop and instructs the processor to jump to the next iteration of the 
loop, skipping any instructions that follow.

For example, in the following code sample, the second section labeled code 
would be unreachable. Each time the continue statement is evaluated, the pro-
cessor jumps directly to the while statement.

do
{
    code;
    continue;
    code;
}
while (condition);

A loop with a continue statement looks similar to a normal loop of that type 
when written without code blocks. As shown next, a continue can be implemented 
by using a goto that jumps to a label located right before the loop condition.

loop:
 
code;
goto check_condition;
code;
 
check_condition:
if (condition)
    goto loop;

The following examples show an example of a loop with a continue state-
ment using actual code:



 Chapter 7 ■ Functions and Control Flow 97

WITH BLOCKS WITHOUT BLOCKS

do

{

    x--;

    continue;

    x++;

}

while (x);

loop:

 

x--;

goto check_condition;

x++;

 

check_condition:

if (x)

    goto loop;

In this code, the instruction x++; will never execute because the continue 
always causes it to be skipped. Typically, a continue will be located inside of 
an if statement because, otherwise, the code following it is pointless. This con-
trived example is designed to demonstrate how continue works without the 
complexity of if statements nested within a loop.

Once the code has been converted to remove code blocks, it can be translated 
to assembly. As before, a goto can be implemented using a nonconditional jump.

CODE X86 ASSEMBLY

loop:

 

x--;

goto check_condition;

x++;

 

check_condition:

if (x)

    goto loop;

loop:

 

sub dword [x], 1

jmp check_condition

add dword [x], 1

 

check_condition:

cmp dword [x], 0

jne loop

break
The break keyword also exists in some programming languages, and it instructs 
the processor to exit the current loop. As with continue, the second chunk of 
code in the following example will never execute, as the break would typically 
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be inside of a conditional statement, but this is an example simply to demon-
strate the break mechanism.

do
{
    code;
    break;
    code;
}
while (condition);

The following example demonstrates how this code would be implemented 
without code blocks. The break keyword is also replaced with a goto, but this 
one jumps to a point outside of the loop rather than before the conditional.

loop:
 
code;
goto break;
code;
 
if (condition)
    goto loop;
 
break:

In the following example, the break statement would terminate the loop after 
the operation x-- has been evaluated once. In this case, the x++ statement and 
the loop conditional will never be executed, but again this is sample code. It 
shows how you’d easily put the break into a conditional.

WITH BLOCKS WITHOUT BLOCKS

do

{

    x--;

    break;

    x++;

}

while (x);

loop:

 

x--;

goto break;

x++;

 

if (x)

    goto loop;

 

break:
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The following example shows how the code can be converted to assembly:

CODE X86 ASSEMBLY

loop:

 

x--;

goto break;

x++;

 

if (x)

    goto loop;

 

break:

loop:

 

sub dword [x], 1

jmp break

add dword [x], 1

 

cmp dword [x], 0

jne loop

 

break:

&&
In higher-level languages, a conditional in an if statement or a loop has the 
potential to evaluate multiple different conditions such as a Boolean AND (&&). 
In the following example, the if block will be executed only if both condition_1 
and condition_2 are true.

if ( condition_1 && condition_2 ) {
    code;
}

When converting this code to remove code blocks, it is necessary to break the 
multipart if statement into two different if statements. Each of these negates 
one of the conditionals that were included in the original if statement.

if (!condition_1) goto skip_block;
if (!condition_2) goto skip_block;
true:
code;
skip_block:

Once rewritten like this (without code blocks), follow the same formula to 
translate this to assembly.
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||
Another option in if statements is to combine multiple conditions with a Boolean 
OR (||). An example of this is shown in the following pseudocode:

if ( condition_1 || condition_2 ) {
    code;
}

A Boolean OR is also broken into two if statements when removing code 
blocks. However, these if statements look different than with a Boolean AND.

if (condition_1) goto true;
if (!condition_2) goto skip_block;
true:
code;
skip_block: 

A Boolean OR statement is true if either of the two conditions is true. In the 
previous example, the first if statement uses the original condition_1 and 
jumps to the true label since, if it is true, there is no need to evaluate the second 
condition.

However, if this condition is false, the code continues to evaluate condition_2. 
This condition is inverted, and the jump skips to the end of the if statement. 
If condition_2 is true, the code falls through to the true block. Otherwise, it 
jumps past the if statement.

Stack

In assembly, the stack is used to store a few different types of data, including 
the following:

 ■ Local variables

 ■ Scratch space

 ■ Parameters and function calling

The stack gets its name from the fact that it is a last-in-first-out (LIFO) structure 
like a stack of paper. This conceptually matches programming control flow, and 
stacks are extremely common in a wide variety of architectures.

The stack will have a stack pointer that indicates the top of the stack. A few 
instructions specifically dedicated to stack manipulation will be explored in 
depth in this section. A push stores a new value at the current top of the stack 
and updates the stack pointer to indicate the new top of the stack (think of it 
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like adding a new piece of paper to your stack). A pop will move the value at the 
top of the stack into a register or memory address and update the stack pointer 
to indicate the value below it, which is the new top of the stack (taking the top 
piece of paper off the stack).

How the Stack Works
The program stack grows up from a base address when new functions are called 
and shrinks down as functions return. As the stack grows taller, the addresses 
decrease, and as it shrinks, the addresses increase.

The x86 Stack
The stack is not a fundamentally separate object or memory space on the pro-
cessor. Instead, it is a region of memory that has been allocated and designated 
to serve as the stack. It exists in memory alongside the rest of the program, and 
data is simply space allocated by an application. As an example, the following 
code would allocate 128 bytes that you could use as stack space:

section .data
times 128 db 0
stack equ $- 4

In x86 there are two registers that are used to manage the stack:

 ■ esp: The stack pointer holds the address of the top of the stack.

 ■ ebp: The base pointer holds the address of the base of the stack frame.

Logically, a stack would grow upward, and in x86 this means decreasing in 
address as shown in Figure 7.2. Think of it like an upside-down thermometer, 
where 0 is at the top and the largest number is at the bottom.

Figure 7.2: Stack address growth
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Consider the following fragment of an assembly file:

mov esp, stack
...
section .data
times 128 db 0
stack equ $- 4

The times 128 db 0 instruction allocates space for a 128-byte stack. Then, 
the instruction stack equ $-4 defines a constant stack, set to an initial value 
of the current location ($) minus 4 (i.e., 4 bytes into the end of the stack), that 
holds the address of the final dword (4-byte chunk) of that stack.

The first instruction in this code sample initializes the stack pointer, esp, to 
this constant value. The stack can then grow up as new data is added via push 
instructions.

Push and Pop

The push and pop instructions are used to add and remove data from the stack.

Push

The push instruction will add 4 bytes or 1 dword to the top of the stack. It takes 
a single argument that can be a register name, memory address, or constant.

push <register>
push <memory>
push <constant>

When a push is performed, the stack pointer, esp, is automatically decremented 
by 4 to indicate the new top of the stack. Then, the value being pushed to the 
stack is placed at this location.

Table 7.2 illustrates how the push instruction functions. In this case, the stack 
pointer, esp, begins with a value of 0x120, as shown in the left of Table 7.2. Then, 
the following instructions are executed:

; esp = 0x120
mov eax, 0xFEDA8712 
push eax
; esp = 0x11C

These instructions will place 1 dword or 4 bytes on the stack. To accomplish 
this, the stack pointer will be decremented to point to address 0x11C. Then, the 
value 0xFEDA8712 will be stored on the stack, as shown in the table on the right 
of Table 7.2.
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The single push instruction wraps a couple of steps into a single instruction. 
The following code sample is equivalent to the previous:

;esp = 0x120
mov eax, 0xFEDA8712 
sub esp, 4
mov [esp], eax
; esp = 0x11C

In this sample, the value of the stack pointer is explicitly decremented to 
point to the new top of the stack. Then, the value stored in eax is moved to this 
location. These two approaches are interchangeable, but using push is fewer 
instructions.

Pop

In x86, the pop instruction is the inverse of the push instruction and removes 
one dword from the stack. It has the syntax pop dst, where dst can be a reg-
ister or memory address.

The pop instruction reverses the operations performed by push. It starts by 
moving the value stored at [esp] into the indicated register or memory location. 
Then, it automatically increments esp by 4 to point to the new top of the stack.

Table 7.3 illustrates how pop can be used to undo the push from the previous 
example. At the end of that example, the stack resembled the columns on the 
left of this table.

;esp = 0x11C
pop eax
;esp = 0x120
;eax = 0xfeda8712

Table 7.2: Pushing a variable onto the stack

ADDRESS VALUE ADDRESS VALUE

0x11B 0x11B

0x11C 0x11C (esp) 0x12

0x11D 0x11D 0x87

0x11E 0x11E 0xDA

0x11F 0x11F 0xFE

0x120 (esp) 0x11 0x120 0x11

0x121 0x22 0x121 0x22

0x122 0x33 0x122 0x33
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Executing the instruction pop eax would update the stack to resemble the 
image on the right. As part of this process, the eax register would be updated to 
hold the value 0xFEDA8712. Then, the stack pointer, esp, would be incremented 
by 4 to a value of 0x120.

As with the push instruction, pop merges a two-step process into a single 
instruction. The following code is equivalent but explicitly performs each step:

;esp = 0x11C
mov eax, [esp]
add esp, 4
;esp = 0x120
;eax = 0xfeda8712

The Stack as a Scratch Pad

x86 has a limited number of registers, and it’s easy to run out. Often, some kind 
of swap/scratch area is needed to temporarily store information that you’re 
not done using yet. The stack provides a convenient location to temporarily 
store values.

For example, consider the following code:

mov eax, 0xcafed00d
mov ebx, 0x00c0ffee
add eax, ebx
push eax     ; save to free up eax
...          ; do other things
pop eax      ; retrieve saved eax

In this example, the push and pop instructions are used to temporarily 
store the contents of eax on the stack. This frees up the register to be used in  
other calculations. When the stored value is needed again, pop can be used to 
return it to eax.

Table 7.3: Popping a variable from the stack

ADDRESS VALUE ADDRESS VALUE

0x11B 0x11B

0x11C(esp) 0x12 0x11C

0x11D 0x87 0x11D

0x11E 0xDA 0x11E

0x11F 0xFE 0x11F

0x120 0x11 0x120(esp) 0x11

0x121 0x22 0x121 0x22

0x122 0x33 0x122 0x33
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Using Pop Cautiously

Data is rarely deleted on a computer. For example, when a file is deleted in the 
file system or a program releases a variable, the memory associated with it is 
simply marked as available for other uses. The stored data is still present on 
the disk.

The same is true of the stack in x86. When a value is popped from the stack, 
it is copied to a register or memory location, but the value remains on the stack. 
After the stack pointer is adjusted, the popped value is outside the valid range 
of the stack.

After popping a value, it should be considered deallocated and no longer 
safe to use. Any attempt to access data outside of the valid range of the stack 
is dangerous. For example, no legitimate assembly instruction should include 
[esp-...].

Consider the following example, which shows stack traces of various locations; 
the relevant stack trace is indicated in the comments (e.g., ;(1)). Each comment 
location shows the stack after that line has been executed, as shown in Table 7.4.

;(1) esp = 0x10C
push 0xbadc0de ; (2)
pop eax  ;(3)  eax = 0xbadc0de
push 0xc0ffee ;(4)

Table 7.4: Stack trace examples

(1) (2)

ADDRESS VALUE ADDRESS VALUE

0x1000 ?? 0x1000 ??

0x1004 ?? 0x1004 ??

0x1008 ?? 0x1008 (esp) 0xbadc0de

0x100c (esp) 0x11223344 0x100c 0x11223344

0x1010 0x55667788 0x1010 0x55667788

(3) (4)

ADDRESS VALUE ADDRESS VALUE

0x1000 ?? 0x1000 ??

0x1004 ?? 0x1004 ??

0x1008 0xbadc0de 0x1008 (esp) 0xc0ffee

0x100c (esp) 0x11223344 0x100c 0x11223344

0x1010 0x55667788 0x1010 0x55667788
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Notice in stack trace 3, that 0xbadc0de has been popped off the stack, but it 
is still there, until something else comes to overwrite it, as shown in stack state 
4. Again, under legitimate conditions you do not want to rely on/use anything 
above the currently allocated stack ([esp-..]), but this knowledge can in fact 
be insightful for other, less legitimate purposes. Later examples either will no 
longer list the content that is “unallocated” in the stack or will strike through 
(example) the value to denote that it’s unallocated.

Function Calls and Stack Frames

Higher-level programming languages have the concept of functions, which are 
chunks of code that can be called from other functions. x86 has the concept of 
functions as well.

When a function is called, changes are made to the state of the stack. Under-
standing these changes is essential to understanding how the application works.

Functions in x86
x86’s call and ret instructions provide the ability to make functions similar to 
higher-level programming languages.

call

The call instruction has the syntax call op, where op indicates the address of 
the function being called. The argument op can be a register, label, or memory 
address.

call eax    ; branch to eax
call label  ; branch to label
call 0x1000 ; branch to 0x1000

Like push and pop, call actually bundles multiple steps into a single operation. 
First, it creates a return address by pushing the address of the next instruction 
onto the stack. Then, it performs an unconditional jump to the code location 
indicated by op.

ret

The ret instruction accepts no arguments. Its purpose is to return execution to 
the calling function.

This is accomplished by a two-step process. First, ret pops the return address 
saved by call off of the stack. Then, it performs an unconditional jump to that 
address.

How x86 functions work
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With call and ret, it is possible to build functions directly in x86 or translate 
them from other languages Consider the following code:

void a() {
}
 
void b() {
    a();
}

This code defines two functions, a and b, where b calls a. This code is equivalent 
to the following in x86:

b:
    call a
    ret
 
a:
    ret

Table 7.5 illustrates how running this code would affect the stack. Assume 
that these instructions are stored at the following locations in memory, with the 
associated stack traces as marked in comments. Recall the stack shows the state 
after that instruction has executed.

b:
       ;(1)
0x10000  call a  ;(2)
0x10003  ret
 
a:
0x20012  ret  ;(3)

The leftmost image in Table 7.5 shows the initial state of the stack. At this 
point, esp points to address 0x9010, and eip has a value of 0x1000.

The middle image illustrates what happens when the call to a is executed. 
At this point, the value of eip, which is now 0x10003, is pushed onto the stack. 
Now, eip points to the first line of code in a, which has an address of 0x20012.

Once a returns, the original value of eip is popped off the stack, causing it to 
point to the ret instruction in b at 0x10003. The stack pointer is updated as well 
to point to address 0x9010. Note that the value 0x10003 remains in memory but 
is now outside of the stack and should no longer be used or trusted.

Putting together this notion of the stack and functions, take a look at an 
example. Consider the following set of function definitions:

void a() { int x; b(); }
void b() { int x; c(); }
void c() { int x; }



108 Chapter 7 ■ Functions and Control Flow

This begins with the a() function, which has a single local variable, x, and 
calls the b function. Table 7.6 illustrates the structure of the stack once a has 
been called. Note that a’s local data is allocated space and added to the stack.

When a is executed, it declares x and then calls b. This means the flow of exe-
cution will switch to run the code contained in b before returning to a.

To ensure that it returns to the correct location in a, the processor stores a 
return address on the stack. This return address is the address of the instruction 
following the call to b in a.

After a’s return address is placed on the stack, the processor stores b’s local 
data there. Table 7.7 shows the state of the stack before the processor executes 
the first instruction in b.

Table 7.5: Function calls and the stack

(1) (2) (3)

ADDRESS VALUE ADDRESS VALUE ADDRESS VALUE

0x9000 ?? 0x9000 ?? 0x9000 ??

0x9004 ?? 0x9004 ?? 0x9004 ??

0x9008 ?? 0x9008 ?? 0x9008 ??

0x900c ?? 0x900c 0x10003 0x900c 0x10003

0x9010 ?? 0x9010 ?? 0x9010 ??

REGISTER VALUE REGISTER VALUE REGISTER VALUE

esp 0x9010 esp 0x900c esp 0x9010

eip 0x10000 eip 0x20012 eip 0x10003

Table 7.6: Program stack after calling a

STACK

a's local data
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Like a, b will declare its local variables and then make a call to another 
function, c. When executing this call, a return address for b will be placed on 
the stack as well as the local variables of the called function. Once this setup 
for c is complete, the stack will resemble Table 7.8.

In c, the local variable x is declared, and then the function terminates. When 
the processor is done in c, code flow needs to return to the calling function b.

At this point, c’s local data is at the top of the stack but is no longer needed. 
The processor can pop this data from the stack, changing the stack pointer to 
indicate b’s return address.

The processor can then pop this return address off of the stack, storing it in 
eip and updating the stack pointer through the ret instruction. This enables 
the program to return to b and resume executing any code following its call  
to c. At this point, the stack returns to the state shown in Table 7.7.

Table 7.7: Program stack after calling b

STACK

b'local data

a's return address

a's local data

Table 7.8: Program stack after calling c

STACK

c' local data

b'sreturn address

b's local data

a's return address

a's local data
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The call to c is the last instruction in b, so it will immediately return as well. 
Like the return from c, this involves popping local variables off of the stack 
and updating eip by popping a’s return address off of the stack and into eip 
(via ret). Once this is complete, the stack will resemble Table 7.6.

After this return from b, a will also return. a’s local data will be popped off 
of the stack. Then, the eip register will be updated based on the return address 
of the calling function, which occurred prior to our analysis and is not shown 
in Table 7.6, and execution will resume within that function.

Stack Analysis
As functions are called and return from calls, they have an impact on the program 
stack. For example, consider the following code:

void a() { }
void b() { }
void c() { a(); b(); }

This code defines three functions, a, b, and c, and c calls both of the other two.
When a function is running or is within the call stack of the running function, 

its return address is in the stack. For example, when a is running, the return 
addresses for a and c are on the stack. Similarly, when b is running, the return 
addresses for b and c are on the stack.

Examination of the return addresses stored on the stack provides visibility 
into how a particular point in the program was reached. Each function in the 
call stack will have its return address local variables and scratch data visible 
in the stack.

This practice is called unwinding the stack. In gdb, the info stack command 
will show the current state of the stack.

Calling Conventions
The call and ret instructions make it possible to create functions in assembly. 
However, with only call and ret, these functions must be self-contained without 
the ability to pass data between functions.

In higher-level programming languages, functions commonly have param-
eters or arguments, which are variables that are passed to a function by the  
calling function. However, machine code doesn’t have the concept of parame-
ters; there are only registers and memory.

x86 has all of the tools necessary to create parameters. Higher-level program-
ming languages that use parameters are translated into assembly. It’s the respon-
sibility of the programmer or the compiler to choose how to use these tools.
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Why Conventions Are Necessary

With registers, the stack, and even memory locations, x86 has the ability to pass 
values from one function to another. Parameters can be stored in registers or 
pushed and popped from the stack.

However, communication or agreements between functions is necessary if 
they plan to use parameters, registers, or the stack in a consistent way. If the 
calling function is using certain locations to pass parameters, the callee needs to 
know which locations are used for which values. The same is true if the callee 
is returning data to the caller.

void caller() {   ... callee()} //nomenclature definition

Also, if the caller is using a register to store its internal values, the callee needs 
to know not to overwrite those values. This is especially a concern if the callee 
uses operations like mul that modify registers but are easy to miss.

Within a small program, the developer could design their code to contain that 
knowledge. If function a takes three parameters, the developer could create a 
scheme that passes them via registers or the stack. Similarly, the struct needed 
by function b could be passed by allocating a particular location in memory.

However, while this approach may work on a small scale, it is unscalable and 
prone to error. An oversight could result in vital data being accidentally clob-
bered by a mul operation. Also, such an ad hoc scheme makes it more difficult 
to work with teams of developers.

Introduction to Calling Conventions

Calling conventions are designed to make it easier to pass data between functions 
by defining the rules of engagement between functions. They are part of the 
application binary interface (ABI), which is the lowest-level definition of how 
pieces of code interact.

A calling convention must define a few rules, including the following:

 ■ Parameter location: Where will parameters be passed from the caller to 
the callee (stack versus registers)?

 ■ Parameter ordering: How will parameters be organized, on the stack or 
into registers?

 ■ Stack cleanup: If the stack is used, which function is responsible for 
removing values from the stack (caller versus callee cleanup)?

 ■ Register access: Which registers can the callee use without needing to 
back up their previous values and restore them before returning?
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 ■ Return values: Where and how will values be returned from the callee to 
the caller?

Calling conventions can vary based on different factors, including the following:

 ■ Architecture (x86 versus ARM)

 ■ Operating system (UN*X versus Windows)

 ■ Programming language (C versus Java)

 ■ Even compiler (GCC versus Microsoft)

In the early days of programming, standards didn’t really exist. As a result, 
programs couldn’t work together if their developers didn’t agree on a calling 
convention.

Initially, there were many different companies, each with its own conventions. 
Over time, these have been whittled down to a handful of popular standards, 
including the following:

 ■ cdecl

 ■ syscall

 ■ optlink

 ■ pascall

 ■ register

 ■ stdcall

 ■ fastcall

 ■ safecall

 ■ thiscall

cdecl
cdecl (“see deckel”) is short for “C declaration” and is one of the most common 
calling conventions on the x86 architecture. While it originated with C, cdecl 
is used for a variety of different programming languages and architectures. It 
is also a useful standard when writing assembly by hand.

cdecl defines the following rules:

 ■ Stack-based parameters: Arguments are pushed from right to left onto 
the stack to be passed to the callee.

 ■ Caller cleanup: The calling function is responsible for removing argu-
ments from the stack once the callee returns.
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 ■ Return value: The eax register is used to hold a function’s return value.

 ■ Available registers: The callee is free to modify eax, ecx, and edx. The 
caller should save any needed values in these registers before making the 
call. The callee should save the values of other registers before using them 
and restore them before returning.

Consider the instruction int s = add(1,2). Using the cdecl standard, this 
would translate to the following x86 assembly code:

; Save regs we need to keep according to cdecl.
; Optional if we don't intend to modify these registers.
push    eax
push    ecx
push    edx
; Push parameters from right to left. The original 
; code was add(1,2), so left to right is 2, then 1
push    2
push    1
 
; Call add.
call    add
 
; Remove parameters from the stack. We pushed 2x 4- byte values
; we can either do 2 pops, or add 8 back to the stack
add esp, 8
 
; Save the return value into eax (where cdecl says return values go)
mov [s], eax
 
; Restore the saved registers, remember its last
; in first out, so we pushed edx last, meaning it is the first to pop
pop edx
pop ecx
pop eax

Saving Registers

In cdecl, functions are free to modify eax, ecx, and edx without saving their 
values. Therefore, the following function, f, is valid under the standard.

f:  mov ecx, 0xd15ea5e
    mov edx, 0xfee1dead
    lea eax, [ecx + edx]
    ret
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However, any other registers used by the callee must have their values stored 
before they are modified and the originals restored before returning.

f:  push   ebx
    push   ebp
    push   esi
    mov    ebp, 0xd15ea5e
    mov    ebx, 0xfee1dead
    lea    esi, [ebp + ebx]
    pop    esi
    pop    ebp
    pop    ebx
    ret

This function uses ebx, ebp, and esi, so it pushes their previous values onto the 
stack before using the registers and pops these values back into the registers 
before returning.

With cdecl, a calling function knows which registers’ values it can trust after 
calling another function. The callee is allowed to modify the values of eax, ecx, 
and edx at will, so the caller should save these registers’ values if it wants to 
use them later. However, all of the other registers’ values should be preserved 
by the callee, so there is no need to save them before making a call.

For example, consider the following code block:

g:
    mov   ebx, 0xd15ea5e
    mov   ecx, 0xfee1dead
    call  f

After the call to f, function g can rely on ebx retaining the value 0xd15ea5e. 
However, it cannot assume that ecx will still have the value 0xfee1dead.

Return Values

In higher-level programming languages, functions commonly use return values 
to pass information to their callers. For example, a function may be designed to 
return 0 upon successful completion or an error code if something went wrong. 
For example, the following function returns a value of 1 upon completion:

int f()
{
    return 1;
}

When using the cdecl calling convention, this return value is stored in the 
eax register. The following x86 code is equivalent to the previous function f:

f:
    mov  eax, 1
    ret
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Functions can be of varying types and have different return values that match 
these types. For example, the following function is designed to return a char* 
pointer and defaults to a NULL pointer:

char* f()
{
    return NULL;
}

In x86, a register can be used as a pointer. The following x86 code uses a value 
of 0 to represent the NULL pointer equivalent; eax could also be used to indicate 
the location of a char array in memory.

f:
    mov  eax, 0
    ret

Accessing Parameters

The cdecl standard uses the stack to pass parameters to a function. Some things 
to keep in mind when attempting to access parameters include the following:

 ■ The top of the stack (last value pushed) is [esp].

 ■ The stack grows down (toward lower addresses).

 ■ The call instruction pushes the return address onto the stack.

 ■ The caller pushed arguments right to left.

 ■ The callee’s return value should be stored in eax.

Keeping these factors in mind, consider how a call to the following function 
would be implemented in x86:

int add (int x, int y) 
{
        return x+y;
}

In x86, the equivalent of this would be the following:

f:
    push  1   ; y
    push  2   ; x
    call  add
    mov   [s], eax  ;save the return value to memory
    pop   eax
    pop   eax
    ret
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Table 7.9: Stack in add function

ADDRESS VALUE

0xeff0

0xeff4

0xeff8 (esp) (Return address)

0xeffc 2

0xf000 1

; int add(int x, int y) { return x+y; }
add:
    mov eax, [esp+4]    ; retrieve x from stack
    mov edx, [esp+8]    ; retrieve y from stack
    add eax, edx
    ret

When a function is called, it has an effect on the current program stack. 
Table 7.9 shows the state of the stack within the add function.

While it’s possible to access parameters from [esp], this approach can run 
into problems. Consider how the following instructions within add affect the 
value of esp:

; int f(int x);
f:
    mov  eax, [esp+4]    ; x is at [esp+4]
    push ebx             ; save ebx 
    mov  ebx, [esp+8]    ; x is now at [esp+8]
    ...

As parameters are popped from the stack by the callee, the location of the top 
of the stack changes. As a result, the locations of parameters relative to esp 
change as well.

Stack Frames
The value of esp changes too frequently to be a useful frame of reference for the 
locations of variables within the stack. Each time a value is pushed or popped, 
the value of esp and the relative locations of the other stack variables change.

This is where the other stack register ebp (also known as the base pointer 
or frame pointer) comes into play. The ebp register points to the bottom of the 
current stack frame, which is the bottom of a section of memory on the stack 
used by a particular function.
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Prologues and Epilogues

x86 functions commonly start and end with chunks of boilerplate code. The 
purpose of this code is to set up and tear down the function’s stack frame.

Setting Up a Stack Frame

The function prologue or preamble sets up the stack frame and is found at the 
very beginning of the function. The prologue performs two functions.

 ■ Save the previous stack frame with push ebp.

 ■ Set the new stack frame with mov ebp, esp.

These instructions appear at the very beginning of a function. Table 7.10 
shows the effect of each on the stack.

;(1)
push ebp ;(2)
move ebp, esp ; (3)
push 0x11223344 ;(4)

(3) (4)

ADDRESS VALUE ADDRESS VALUE

0xefe8 ?? 0xefe8 ??  

0xeff0 ?? 0xeff0 (esp) 0x11223344  

0xeff4 (esp, ebp) Old ebp 0xeff4 (ebp) Old ebp  

0xeff8 (return 
address)

0xeff8 (return 
address)

 

0xeffc 2 0xeffc 2  

0xf000 1 0xf000 1  

Table 7.10: Effects of function prologue on stack

(1) (2)

ADDRESS VALUE ADDRESS VALUE

0xefe8 ?? 0xefe8 ??

0xeff0 ?? 0xeff0 ??

0xeff4 ?? 0xeff4 (esp) Old ebp

0xeff8 (esp) (return 
address)

0xeff8 (return 
address)

0xeffc 2 0xeffc 2

0xf000 1 0xf000 1
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The first table shows the stack before the function begins. At this point, the 
function parameters are pushed to the stack (from right to left) as well as the 
caller’s return address.

When the push ebp instruction executes, the previous function’s base pointer 
is stored on the stack. The resulting stack is shown in the second table.

The third table shows the stack after the mov ebp, esp instruction is executed. 
While the stack itself is not updated, the new ebp points to the return address 
of the calling function, same as esp.

After these instructions are executed, the callee can push local variables to 
the stack. While this will modify the value of esp, the value of ebp will stay 
constant (table four). This makes it possible to access parameters and local var-
iables relative to a fixed point, ebp, rather than the more mutable esp.

Tearing Down a Stack Frame

Creating a new stack frame for the current function means you’ve lost the calling 
function’s stack frame. Before the function returns, it needs to undo the changes 
that it’s made and restore the caller’s stack frame.

The function epilogue appears at the end of the function and accomplishes 
this process. It consists of the following three instructions:

mov esp, ebp
pop ebp
ret

The first step of this process is removing any data that has been added to 
the stack. Since data isn’t actually deleted from memory, this simply involves 
changing the stack pointer with the instruction mov esp, ebp. This operation 
would restore the state of the stack as in Table 7.11.

; function body (1)
mov esp, ebp ;(2)
pop ebp ; (3)

Next, the value of the base pointer should be restored to that of the calling 
function. Recall in the preamble this was pushed onto the stack, so this is accom-
plished via the instruction pop ebp, which restores the stack to the original state. 
At this point, the stack is in the proper state to return to the calling function.

While it’s possible to perform this teardown via these two instructions, x86 
offers an alternative option. The leave instruction is equivalent to the follow-
ing two instructions:

mov esp, ebp
pop ebp



 Chapter 7 ■ Functions and Control Flow 119

Accessing Parameters

Stack frames are designed to make it easier to access parameters and other 
values on the stack from within a function. Using the static ebp as a reference 
simplifies the process of determining where a particular value is on the stack. 
For example, Table 7.12 shows the locations of certain values on the stack for 

Table 7.12: Stack locations for common values

LOCATION VALUE

[ebp + 0] Previous frame pointer

[ebp + 4] Function return address

[ebp + 8] First parameter

[ebp + 12] Second parameter

[ebp + 16] Third parameter

... . . .

Table 7.11: Effects of function epilogue on stack

(1) (2)

ADDRESS VALUE ADDRESS VALUE 

0xefe8 (esp) 0x3325d321 0xefe8 0x3325d321

0xeff0 0x11223344 0xeff0 0x11223344

0xeff4 (ebp) Old ebp 0xeff4 (ebp, 
esp)

Old ebp

0xeff8 (return 
address)

0xeff8 (return 
address)

0xeffc 2 0xeffc 2

0xf000 1 0xf000 1

(3)

ADDRESS VALUE

0xefe8 0x3325d321

0xeff0 0x11223344

0xeff4 (esp) Old ebp

0xeff8 (return 
address)

0xeffc 2

0xf000 1
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any function using the cdecl convention. Since ebp does not move during a 
function, these relationships and offsets will always be the same. This means if 
the caller passed in a variable, the first one will always be at ebp+8, the second 
will always be at ebp+12, etc.

The following example shows the build-up and usage of function parameters. 
As with all of these stack examples, remember that each stack is shown after 
the instruction has executed.

f:
    push  1   ; y
    push  2   ; x   ;(1)
    call  add
    mov   [s], eax
    pop   eax
    pop   eax
    ret
 
; int add(int x, int y) { return x+y; }
add:
       ; (2)
    push ebp
    mov  ebp, esp   ;(3)
    mov  eax, [ebp+8]     ; retrieve x from stack
    mov  edx, [ebp+12]    ; retrieve y from stack
    add  eax, edx
    mov  esp, ebp
    pop  ebp
    ret

Table 7.13 shows the stack contents for points (1), (2), and (3) in the pre-
ceding code.

Once location 3 is reached, based on your knowledge of cdecl and the stack 
frame, you know with confidence the first parameter, x, will be at location ebp+8 

Table 7.13: Stack content at points 1, 2, and 3 in the program

(1) (2) (3)

ADDRESS VALUE ADDRESS VALUE ADDRESS VALUE

0xeff4 ?? 0xeff4 0xeff4 
(esp, 
ebp)

Old  
ebp

0xeff8 ?? 0xeff8 
(esp)

return 
address

0xeff8 return  
address

0xeffc 
(esp)

2 0xeffc 2 0xeffc 2

0xf000 1 0xf000 1 0xf000 1
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and have a value of 2. The second parameter, y, will be at location ebp+12 and 
have a value of 1.

Local Variables

A function’s local variables are stored on the stack above the previous frame 
pointer (at lower addresses). After the stack frame has been set up, space can 
be allocated for local variables simply by subtracting the required amount of 
space from esp. This allocation will automatically be undone in the function 
epilogue when the stack pointer is reset based on the base pointer.

For example, consider the following function:

void one_up(int x)
{
       int y = x + 1;
}

In addition to its incoming argument, x, it also defines a local variable, y, that 
will be stored on the stack. The following code shows how this function would 
look after being translated into x86:

one_up:
    push ebp
    mov  ebp, esp
    sub  esp, 4        ; allocate space for local y (4 bytes)
    mov  eax, [ebp+8]  ; load parameter x
    inc  eax           ; x + 1
    mov  [ebp- 4], eax  ; save local y
      ;stack shown here
    mov  esp, ebp
    pop  ebp
    ret

This program’s stack frame is shown in Table 7.14. Note that while esp now 
points to 0xeff4, the value of ebp remains the same (pointing to the caller’s 
saved ebp) after local variables are allocated on the stack. Both parameters and 
local variables can be easily accessed relative to ebp.

Table 7.14: Stack frame of one_up program

ADDRESS VALUE

0xeff4 (esp) y

0xeff8 (ebp) Old ebp

0xeffc Ret address

0xf000 x



122 Chapter 7 ■ Functions and Control Flow

As with parameters, cdecl ensures that local variables are stored at consis-
tent locations across different functions. Table 7.15 shows the locations of local 
variables relative to ebp. In reverse engineering, knowledge of ebp becomes 
incredibly powerful.

 T I P   Understanding that ebp minus anything is referencing a local variable, 
something allocated inside of the function, while access to ebp plus anything is access-
ing information provided to the function by the caller, can help you quickly spot inter-
esting pieces of code or identify critical functionality that could be manipulated, say, by 
input to the program.

Shortcuts

It’s possible to individually push each parameter or local variable to the stack; 
each push updates the stack pointer and moves the value into place.

Instead, a common route compilers take is to allocate space all at once before 
moving values into place. For example, the following instructions are less 
common to find in compiled code:

push 1
push 2

Instead, these instructions are more likely to be assembled to the following:

sub esp, 8     ; allocate 8 bytes on the stack
mov dword [esp+4], 1 ; put 1 on the stack
mov dword [esp], 2   ; put 2 on the stack

Stack Alignment

Some compilers will enforce 32-byte stack alignment when entering a function. 
This means seeking for the memory address of the stack pointer to be evenly 
divisible by 32. This was historically more efficient for systems to fetch memory 
on 32 byte-aligned bounds. This efficiency improvement may not still exist, but 
you will still see compilers occasionally doing things to maintain stack alignment. 

Table 7.15: Stack locations for local variables

LOCATION VALUE

[ebp - 4] First local variable

[ebp - 8] Second local variable

[ebp - 12] Third local variable

... . . .
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How you might see this manifest is, when allocating space for local variables, 
they may allocate excess space to maintain this alignment.

This means it is common for unused space to exist within a function’s  
stack frame. When reversing, don’t get hung up on excess space because it is 
completely normal. When writing your own code, this isn’t something you 
need to manually do, but the goal of this book is to equip you to recognize this 
in code and know it’s something you can mostly ignore.

The Big Picture
When a function is called, it makes several changes to the program stack. To see 
all of these changes in one place, consider the following program:

void hack(...)
{
    ...
}
 
void drink(...)
{
    ...
    hack(...);
    ...
}

Each of the two functions in this program may have zero or more parame-
ters and local variables. Figure 7.3 shows the structure of the stack frames for 
each function.

Figure 7.3: Stack frames for hack and drink functions
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Things to Memorize
x86 assembly programs can be complex. To be effective at x86 reverse engi-
neering, it is vital that you memorize certain things.

The first of these is the structure of a function’s stack frame. Table 7.16 shows 
the complete stack frame, including parameters, return addresses, local vari-
ables, and scratch space.

Another important thing to memorize is the difference between boilerplate 
and complete function prologues and epilogues. Table 7.17 shows how a boiler-
plate prologue differs from one that includes stack allocations for local variables.

Table 7.16: Complete function stack frame

STACK

...

[ebp— 12] or [ebp-0xC] Third local variable

[ebp-8] Second local variable

[ebp-4] First local variable

[ebp] Previous frame pointer

[ebp+4] Function return address

[ebp+8] First parameter

[ebp+12] or [ebp+0xC] Second parameter

[ebp+16] or [ebp+0xF] Third parameter

...

Table 7.17: Two types of prologues

BOILERPLATE PROLOGUE COMPLETE PROLOGUE

push ebp 
      ; save stack frame

mov  ebp, esp 
      ; start new frame

push ebp 
  ; save stack frame

mov ebp, esp ; start new frame

 

sub esp, 20 
  ; allocate 5 4 byte locals

 

push ebx 
  ; save modified regs

push esi

(etc)
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The function epilogue reverses the effects of the function prologue. Table 7.18 
shows the equivalent epilogues for each of these prologues.

Summary

This chapter explored vital concepts for reversing and cracking applications. 
Before moving on, be sure that you have a firm grasp of how control flow can work 
within an applications and the ins and outs of functions and their stack frames.

Table 7.18: Two types of epilogues

BOILERPLATE EPILOGUE COMPLETE EPILOGUE

mov esp, ebp  ; discard locals

pop ebp       ; restore frame

ret           ; return

(etc)

pop esi 
      ; restore modified regs

pop ebx

 

mov esp, ebp ; discard locals

pop ebp      ; restore frame

ret          ; return
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For many higher- level programming languages, compilation is a vital part of 
the process of converting an application from source code to machine- readable 
binary code. During this process, a compiler may make minor changes to the 
code to make it as fast and efficient as possible.

The process of compiling and optimizing an application can make it more 
difficult to reverse engineer. This chapter describes how to find a starting point 
for reversing an application and some of the common actions that compilers 
take that can complicate reverse engineering.

Finding Starting Code

When code is compiled, the compiler introduces a large amount of boilerplate 
that is executed before the actual application code is ever called. When reverse 
engineering, one of the art forms you’ll need to master is how to skip over this 
and focus on the target code, not the boilerplate setup. However, identifying 
the entry point into the target code can be complex.

When reversing someone else’s code, it’s unlikely that the code will be com-
piled with debugging symbols. This means function and variable names and 
other information that could provide a hint regarding the actual code’s entry 
point have been stripped from the application. Figure 8.1 shows what opening 
a file without debugging symbols looks like in gdb.

Compilers and Optimizers
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This lack of debugging symbols creates a major challenge because applica-
tions written in higher languages rather than pure assembly include much more 
overhead and compiler- generated symbols. The following is sample output from 
an info files command in gdb showing the number of different sections that 
exist in a simple executable:

Entry point: 0x80483a0
0x08048154 -  0x08048167 is .interp
0x08048168 -  0x08048188 is .note.ABI- tag
0x08048188 -  0x080481ac is .note.gnu.build- id
0x080481ac -  0x080481cc is .gnu.hash
0x080481cc -  0x0804823c is .dynsym
0x0804823c -  0x080482a6 is .dynstr
0x080482a6 -  0x080482b4 is .gnu.version
0x080482b4 -  0x080482e4 is .gnu.version_r
0x080482e4 -  0x080482ec is .rel.dyn
0x080482ec -  0x08048314 is .rel.plt
0x08048314 -  0x08048338 is .init
0x08048340 -  0x080483a0 is .plt
0x080483a0 -  0x08048648 is .text
0x08048648 -  0x0804865d is .fini
0x08048660 -  0x080486a9 is .rodata
0x080486ac -  0x080486f0 is .eh_frame_hdr
0x080486f0 -  0x080487f4 is .eh_frame
0x08049f08 -  0x08049f0c is .init_array
0x08049f0c -  0x08049f10 is .fini_array
0x08049f10 -  0x08049f14 is .jcr
0x08049f14 -  0x08049ffc is .dynamic
0x08049ffc -  0x0804a000 is .got
0x0804a000 -  0x0804a020 is .got.plt
0x0804a020 -  0x0804a028 is .data
0x0804a028 -  0x0804a02c is .bss
0xf7fdc114 -  0xf7fdc138 is .note.gnu.build- id in /lib/ld- linux.so.2
0xf7fdc138 -  0xf7fdc1f4 is .hash in /lib/ld- linux.so.2
0xf7fdc1f4 -  0xf7fdc2d4 is .gnu.hash in /lib/ld- linux.so.2
0xf7fdc2d4 -  0xf7fdc494 is .dynsym in /lib/ld- linux.so.2
0xf7fdc494 -  0xf7fdc612 is .dynstr in /lib/ld- linux.so.2
0xf7fdc612 -  0xf7fdc64a is .gnu.version in /lib/ld- linux.so.2
0xf7fdc64c -  0xf7fdc714 is .gnu.version_d in /lib/ld- linux.so.2

Figure 8.1:  Application without debugging symbols in gdb
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0xf7fdc714 -  0xf7fdc77c is .rel.dyn in /lib/ld- linux.so.2
0xf7fdc77c -  0xf7fdc7ac is .rel.plt in /lib/ld- linux.so.2
0xf7fdc7b0 -  0xf7fdc820 is .plt in /lib/ld- linux.so.2
0xf7fdc820 -  0xf7ff4baf is .text in /lib/ld- linux.so.2
0xf7ff4bc0 -  0xf7ff8a60 is .rodata in /lib/ld- linux.so.2
0xf7ff8a60 -  0xf7ff90ec is .eh_frame_hdr in /lib/ld- linux.so.2
0xf7ff90ec -  0xf7ffb654 is .eh_frame in /lib/ld- linux.so.2
0xf7ffccc0 -  0xf7ffcf3c is .data.rel.ro in /lib/ld- linux.so.2
0xf7ffcf3c -  0xf7ffcff4 is .dynamic in /lib/ld- linux.so.2

This list can get even longer in more complex binaries, with numerous depen-
dencies and libraries. Looking at this output, you know that the .text section 
of the executable is located at address 0x080483a0. Disassembling the code at 
this location can provide a hint to the entry point of the target code. Figure 8.2 
shows the result of disassembling the code at this location in gdb.

When searching for the entry point to the target code, this can depend on the 
exact compiler and language used to build. You’ll see an example for finding 
starting code in a C/C++ application, as that’s still one of the most common 
languages used today. To begin with, look for a call to __libc_start_main. 
The address of the target code will be passed as a parameter to this function, 
and given what you know of calling conventions, you know that means we’re 
looking for what’s put on the stack before the call.

In Figure 8.2, the address 0x804848c is pushed onto the stack right before the 
call to __libc_start_main, making it a parameter to the function. Therefore, 
the target code begins at that address. Figure 8.3 shows a disassembly of the 
main function, including calls to libc.

Figure 8.2:  .text disassembly in gdb
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Compilers

Compilers take code and translate it to machine code that the processor can 
read. There are various things that compilers can do to affect reverse engi-
neering, both intentionally and unintentionally. This section focuses on unin-
tentional changes; intentional techniques such as obfuscation will be covered 
in Chapter 12, “Defense.”

Optimization
Compilers can be configured to optimize code based on various metrics, including 
speed and disk size, or not optimized at all. The code can look very different 
based on whether optimizations are applied.

Consider the following code sample. This code implements a simple if state-
ment with two conditions.

int main(int argc, char* argv[])
{
       if (argc >= 3 && argc <= 8)
       {
             printf("valid number of args\n");
       }
}

Figure 8.4 shows what the code looks like in a disassembler (more on this in 
Chapter 11, “Patching and Advanced Tooling,” don’t worry) when compiled 
with no optimizations. Note that the checks for the two conditions comparing 
the values to 2 and 8 are clearly visible in the code.

Figure 8.3:  Main function disassembly in gdb
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Figure 8.5 shows the same code when optimized for speed and space.  
The comparisons with the values 2 and 8 are no longer visible in the code,  
and the code no longer looks like an if statement with two conditions.

Figure 8.6 shows the code optimized solely based on disk space. Again, the 
two comparisons are missing.

If you examine the code, you’ll see that the code checks if (argc- 3) > 5. If 
argc < 3, then subtracting 3 will cause an underflow and cause the value in 
eax to be a large positive number. If argc > 8, then argc- 3 > 5. In both of these 
cases, the result will be greater than 5, so the optimized statement is equivalent 
to the original test. Compiler optimizations result in equivalent logic, but they 
can make code much more difficult to read and reason about.

Most compilers have options for setting the level of optimization. While you’re 
learning, if you’re having difficulty reversing an application you’ve written, try 
disabling optimizations when compiling. On the flip side, if you want to make 
your code more difficult to reverse engineer, compiler optimizations are an easy 
and beneficial way to do so.

Figure 8.4:  Unoptimized code in a disassembler
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Stripping
Stripping a binary means removing all information that is not necessary for the 
code to execute, including the symbol table. An unstripped binary retains its 
symbol table, while a stripped one does not.

Symbols can be extremely useful for debugging an application. For example, 
consider the following code:

// Declare an external function
extern double bar(double x);
 
// Define a public function
double foo(int count)
{
       double sum = 0.0;
 
       // Sum all the values bar(1) to bar(count)
       for (int i = 1; i <= count; i++)

Figure 8.5:  Speed and space- optimized code in a disassembler
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             sum += bar((double) i);
       return sum; 
}

If this code is parsed by a compiler, it will at least contain the symbol table 
entries shown in Figure 8.7. Symbols are so useful in debugging that Microsoft 
allows you to download symbols for their applications in case you need to trou-
bleshoot! This additional information can be invaluable for understanding the 
intent behind an application.

Figure 8.6:  Space- optimized code in a disassembler

Figure 8.7:  Application debugging symbols
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If a file is stripped, it will show that no debugging symbols are found when 
opened in gdb, as shown in Figure 8.1. These files are much more difficult to 
reverse engineer.

Symbols can be stripped from an application in a few different ways. One 
option is to use compiler flags, such as gcc –fno- rtti –s. Another option is to 
use post- build stripping tools, such as strip in Linux.

Symbols make it easier for an attacker to reverse engineer an application 
because they can help with locating areas of interest and understanding the 
intent behind certain variables. However, there are legitimate reasons to leave an 
application unstripped. For example, symbols help with creating crash reports 
and error logs and support legitimate debugging to fix client errors. While 
learning, if you are writing your own code and compiling it to practice with, start 
by making sure you’re building with symbols left in. As you progress in your 
skills, then remove symbols. When reverse engineering someone else’s code, it’s 
highly unlikely you will find symbols have been left in it, but it does happen!

Linking
Applications are rarely written in isolation anymore. What’s more common is 
to include libraries that provide core pieces of capabilities (such as communica-
tions, logging, drawing, etc.). When compiling an application that uses libraries, 
there are two options for how those get built. These libraries can be statically or 
dynamically linked into the application. Each has its benefits and drawbacks 
from a software cracking perspective.

Static Linking

With static linking, libraries are built into the application itself. This improves 
the speed of execution because the target addresses of any calls to the library 
are built into it at compile time. Also, statically linked applications are more 
portable because they have fewer dependencies on the environment.

However, static linking also has its downsides. Statically linked applications 
are larger because the entire library is built into the executable, even if you use 
only one function from a large library. Additionally, any updates to the library 
require recompilation of the applications using them.

The file bloat caused by static linking can be significant for programs. For 
example, as shown in Figure 8.8, even a simple one- line “hello world” program 
will link dozens of libraries.

Dynamic Linking

Dynamic linking is the other option and the default choice for many compilers. 
With dynamic linking, the required libraries are located on the system at runtime. 
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If a library is not already loaded into system memory, the library must be found 
on the system and loaded into the shared library memory; however, common 
libraries are likely already loaded and available for use.

Dynamic linking reduces application size and eliminates the need to recom-
pile an application after a library update if the update is backward compatible. 
Additionally, dynamically linked applications can be faster at load time if the 
libraries that they use are already loaded into memory.

However, dynamically linked applications depend on the libraries that they 
need being installed on the system and can be slower than statically linked ones 
(if dependencies are not already loaded and need to be located and loaded). In 
addition to the need to load any libraries not already in memory, dynamically 
linked applications need to find the address of called functions at runtime. This 
involves searching the shared memory space for the library and may require a 
great deal of memory paging.

Security Impacts of Linking

The choice of whether to use static or dynamic linking depends on the devel-
oper or the compiler. But putting your software cracking hats on, both options 
have their security implications.

Reverse engineers typically prefer that an application be statically linked. Static 
linking makes it easier to determine the exact load address of shared library 
functions, which is useful when crafting exploits. It means you can leverage 
code in the shared libraries to perform your exploitation, and that code will be 
at a predictable location inside of your binary at runtime. Leveraging a library 
that is linked dynamically is possible, but it is much more difficult because of the 

Figure 8.8:  Linked libraries in “hello world” program
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need to search for the desired library in the shared library memory and locate 
its address every single time, as it will move and be unpredictable.

Crackers, on the other hand, tend to prefer dynamically linked libraries. 
Dynamic linking results in much less code to sift through, and crackers are 
interested solely in an application’s custom code, not the shared library code.

Summary

The process of compiling and optimizing an application can make it much more 
difficult to reverse engineer even if the compiler isn’t intentionally obfuscating 
it. However, like any anti- reversing protection, this can only slow down the 
process since no software is uncrackable.
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Up until this point, the focus of this book has been on understanding how the 
guts of computers work. This is essential to being an effective software cracker.

Now that you have the foundation, the focus shifts to the art of software 
cracking. To experiment and practice cracking, you’ll work with a variety of 
targets:

 ■ Real software: Software taken from the real world. When analyzing real 
software, you must take into account copyright law to ensure no copyright 
violations.

 ■ Manufactured examples: Applications written for this book to illustrate 
specific concepts.

 ■ crackmes: Small crackable programs written by other software crackers 
to demonstrate an idea and challenge others.

crackmes like those used in this course are manufactured examples that pro-
vide a few benefits to an aspiring cracker. In general, they are designed to be 
solvable, legal to crack, and safe to run in a debugger.

crackmes are also often labeled based on their focus, level of expertise, etc. 
As a result, you can specifically seek out challenge problems suited to your 
interests and skill level (i.e., advanced C cracker versus beginner Java cracker).

Reverse Engineering: Tools and 
Strategies
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Lab: RE Bingo

This lab provides hands-on experience in reversing code that has been built 
(and obfuscated) by a compiler.

Labs and all associated instructions can be found in their corresponding 
folder here:

https://github.com/DazzleCatDuo/ 

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab RE Bingo and follow the provided instructions.

Skills
This lab uses objdump to practice identifying control flow constructs and com-
piler settings when reversing. Some of the key skills being tested include the 
following:

 ■ Reverse engineering x86

 ■ Control flow constructs

 ■ Impact of compiler settings

Takeaways
Quickly identifying control flow constructs can massively speed up reverse 
engineering. They provide insights into the logic of an application and make it 
more readable and comprehensible.

However, compiler configuration has a significant impact on the speed of 
reversing. For example, stripping and optimizing, in general, slow things down.

In larger and more complex programs, automating some reverse engineering 
is often necessary. It is common to write custom tools for a specific target. 
Unpacking, deobfuscating, and circumventing anti-debug checks are common 
tasks for automation.

Basic REconnaissance

As a software cracker, these are the most common situation that you’ll face:

 ■ You want to crack a program.

 ■ You have no source code.

 ■ You have an executable.

In this situation, you need a means of quickly assessing the target executable 
and finding a starting point for your analysis. Some of the most commonly used 

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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initial tools for reverse engineers are objdump, strace, ltrace, and strings. 
You’ll see more advanced tools as you progress through the book, but as these 
are some of the most foundational, they’re a good starting point.

objdump
Object Dump (objdump) is a Linux-based tool for dumping the disassembly of 
any program. As shown in Figure 9.1, it has numerous options. The most impor-
tant ones for quick reverse engineering include the following:

 ■ -d: Instructs objdump to disassemble the content of all sections

 ■ -Mintel: Tells objdump to display assembly in Intel syntax (as opposed 
to AT&T)

For example, to disassemble an application named appname, use the command 
objdump –d –Mintel appname.

Figure 9.2 shows the output from running objdump on a sample application. 
Note that objdump will display memory locations, function names, x86 machine 
code, and x86 assembly.

Figure 9.1: objump options

Figure 9.2: Sample objdump output
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strace and ltrace
strace and ltrace provide the ability to monitor library (ltrace) and system 
(strace) calls. They make it possible to trace through a program and get a sense 
of what other programs are doing.

If any program in any language wants to do anything useful, it will have to 
make system calls. Characterization of what libraries and external functionality 
it’s using can be immensely useful when doing reconnaissance on a system. 
You’ll notice that, with these tools, not only can you see what it’s using, but 
you can also see who is using it (i.e., what address in the application called). 
So, it can also help you to focus on useful functions. For example, you might 
see which piece of code calls into cryptography libraries a lot; that’s probably 
interesting from a cracking perspective.

ltrace

ltrace (library trace) is a Linux command-line utility that traces library calls. 
Library calls are calls by your application into dynamically linked libraries. The 
syntax of the command is ltrace <command>.

For example, if you #include <stdio.h>, that library gets dynamically linked 
when your program loads. When you call printf or fopen, that is calling into 
the standard C library. This construct holds true for all programming languages, 
which all include a notion of including external libraries.

strace

strace (system trace) is a Linux command-line utility that traces system calls. 
The syntax of the command is strace <command>.

System calls are calls by your application into the operating system, which 
manages things like files and your console window. Functions like fopen and 
printf eventually, in their inner workings, must make calls into the operating 
system. Just like with ltrace, this holds true for all programming languages; 
it’s rare for an application to exist that doesn’t utilize OS-level functionality.

strace Example: echo

Monitoring system calls provides a crude way to trace through a program. 
Suppose you wrote the echo utility and wanted to watch how it was running.

echo is a Linux command that echoes the input to the output. For example, 
the command echo hello! prints "hello!" to the terminal.

But what is it actually doing? Running strace echo hello! will produce 
output similar to Figure 9.3.
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This image is complex and can be a lot to decipher. Looking through the 
result, you can see some standard system calls at the beginning that are used 
to get the echo program up and running.

The following lines are the interesting output, which are found at the very end:

write(1, "hello!\n", 7hello!
)                 = 7
close(1)          = 0

This says that echo wrote a string to stream 1, which, remember, is stdout. 
The write command had a return value of 7 because seven characters were 
written. Finally, echo closed stream 1, which returned 0 for success. While this 
seems simple, imagine using this to track where an application wrote a piece 
of configuration data. Say you change a setting and want to see how it stores 
that on the system.

strace Example: Malicious Kittens

Comet Cursor was an early example of spyware on the Windows OS. It allowed 
users to change the appearance of the mouse cursor and websites to use cus-
tomized cursors. The application installed itself without user permission and 
secretly tracked users.

Figure 9.3: strace output for echo hello!
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As shown in Figure 9.4, numerous kitten cursor applications exist in the 
wild. This example uses an example cursor application that secretly calls out 
to a Russian IP address.

Running the code shows no signs of the malicious functionality, as shown here:

deltaop@deltaleph- ubuntu:~$ ./kittens 
Registering kitten cursor!
Done!  Enjoy the kitties!
deltaop@deltaleph- ubuntu:~$ 

However, analyzing the code in strace tells a different story, as shown here:

deltaop@deltaleph- ubuntu:~$ strace ./kittens
...
poll([{fd=3, events=POLLOUT}], 1, 0)    = 1 ([{fd=3, revents=POLLOUT}])
send(3, "!$\1\0\0\1\0\0\0\0\0\0\7kremlin\2ru\0\0\34\0\1", 
      28, MSG_NOSIGNAL) = 28
poll([{fd=3, events=POLLIN}], 1, 5000)  = 1 ([{fd=3, revents=POLLIN}])
ioctl(3, FIONREAD, [28])                = 0 
recvfrom(3, "!$\201\200\0\1\0\0\0\0\0\0\7kremlin\2ru\0\0\34\0\1", 1024,
       0, {sa_family=AF_INET, sin_port=htons(53),sin_addr=inet_ 
          addr("192.168.1.1")}, [16]) = 28
close(3)                                = 0 
socket(PF_INET, SOCK_DGRAM|SOCK_NONBLOCK, IPPROTO_IP) = 3 
connect(3, {sa_family=AF_INET, sin_port=htons(53),
       sin_addr=inet_addr("192.168.1.1")}, 16) = 0 
...

This sample output from strace shows multiple events. To focus on events 
of interest, use grep (which limits results to lines that match your search string, 
in this case connect).

Figure 9.4: Kitten cursor applications



 Chapter 9 ■ Reverse Engineering: Tools and Strategies 143

deltaop@deltaleph- ubuntu:~$ strace - f ./kittens 2>&1 | grep connect
 
connect(3, {sa_family=AF_FILE, path="/var/run/nscd/socket"},
       110) = - 1 ENOENT
connect(3, {sa_family=AF_FILE, path="/var/run/nscd/socket"},
       110) = - 1 ENOENT
connect(3, {sa_family=AF_INET, sin_port=htons(53),
       sin_addr=inet_addr("192.168.1.1")}, 16) = 0
connect(3, {sa_family=AF_INET, sin_port=htons(53),
       sin_addr=inet_addr("192.168.1.1")}, 16) = 0
connect(3, {sa_family=AF_INET, sin_port=htons(53),
       sin_addr=inet_addr("192.168.1.1")}, 16) = 0
connect(3, {sa_family=AF_INET, sin_port=htons(80),
       sin_addr=inet_addr("195.208.24.91")}, 16) = 0
write(2, "connected.\n", 11) = 11

The previous sample output looks for events with the word connect in them. 
This includes multiple Internet connections, including one to 195.208.24.91, 
which is suspicious as it’s an external IP address, and why would your cursor 
need to do that?

strings
strings is a Linux utility designed to extract the printable strings used by an 
application. It looks for a series of ASCII printable characters with a (configu-
rable) minimum length and prints any that it finds.
strings can be very useful in reverse engineering because it provides a 

high-level understanding of the sorts of things that a program might do. Also, 
once you find strings of interest, you’ll see later how you can use those strings 
to easily locate the associated piece of code. For example, a string that says  
"incorrect password" can be used to quickly trace where the password handling 
code is. For example, the following strings provide valuable hints about an 
application:

 ■ "Enter password:"

 ■ "open_socket"

 ■ "YOUR FILES HAVE BEEN ENCRYPTED!"

The syntax of the command is strings program. While it is commonly used with 
no options, the following flags are sometimes useful when reverse engineering:

 ■ -a: Show all strings in the file, as opposed to only those in the loaded sec-
tions of object files. This is often useful when dealing with obfuscated, 
nested, or otherwise unusual binaries.

 ■ -n: Specify the minimum length of successive printable characters for a 
sequence of bytes to be considered a string. The default is 4. It is often 
useful to expand or limit the number of strings found by the tool.
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Dependency Walker
Dependency walking is a technique used to quickly understand the imports 
and exports of an application. Dependency Walker is one example of such a 
tool. (See the “Tools” section of our repository for links.)

Dependency walking provides a valuable, high-level view into what actions 
a program will perform and is often a useful first step in cracking. Most appli-
cations don’t implement all their own functions; they will use functions from 
the operating system, or external libraries. Each time an application reaches 
outside of its code, that will show up as an imported function. Also, often 
applications will share functionality with other applications, and anytime a 
function is something “available to be shared,” it will show up as an export of 
the application.

Loading a program into a program like Dependency Walker shows the DLLs 
that it uses and the API calls it is expected to make. Figure 9.5 shows that the 
program will create several registry keys.

Reverse Engineering Strategy

Reverse engineering is still more of an art than a science. While great tools and 
techniques are available to help, effective reversing ultimately relies heavily on 
intuition and experience.

As such, it is not possible to give a prescriptive solution. However, there are 
general approaches and best practices that can help.

Figure 9.5: Examining registry modifications in Dependency Walker
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Find Areas of Interest
Applications contain large volumes of code, and most of it is irrelevant or 
unnecessary to reverse engineer. An important first step when reversing an 
application is finding the area of the program you are after.

You’ll continue to learn lots of interesting techniques for narrowing this 
down, but a few are now available to you based on just knowledge of the 
previous tools:

 ■ Interesting strings: Look for program strings that you are interested in 
(e.g., “Incorrect Key”) and find where those strings are used (e.g., identify 
calls to printf using those strings).

 ■ User input: Look for where input from the user is received (e.g., scanf, 
dialog boxes, etc.) and find where that input is processed.

 ■ System input: Look for where input is read in from the system, such as 
configuration files and registry settings.

 ■ Authentication code: If possible, use a debugger to pause the program 
after inputting the username/key. Then, scan the memory for the entered 
values, set HW breakpoints on those locations, and rerun the application 
to find where the values are read or written.

Iteratively Annotate Code
Even after you identify the code of interest, it may be difficult to understand. 
One approach to understand complex code is to perform multiple passes, add-
ing information (such as comments) during each pass.

To do so, annotate the target area until you understand how it works using 
the following process:

 ■ Identify and mark local variables: Use calling convention rules to iden-
tify locals (e.g., [ebp-4] in cdecl). These can be labeled using something 
vague at first (e.g., local1).

 ■ Identify and mark function parameters: Use calling convention rules to 
identify parameters (e.g., [ebp+12] in cdecl). These can also be labeled 
using something vague at first (e.g., arg1).

 ■ Identify API calls (e.g., atoi): Use knowledge of API parameters to further 
annotate local variables. For example, API documentation indicates atoi 
is passed a string that will be converted to an integer so can rename our 
parameter integer_string.

 ■ Add comments to complex control flows: For example, “this code factors 
the number.”
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 ■ Refine descriptions based on observed data flows: For example, local1 
may become loop_counter if you see it used as the counter in a for loop.

A big part of effective reverse engineering is moving quickly. Even small 
programs have too much code to analyze everything.

The vast majority of an application’s code will have no relevance to what you 
are after. Knowing what to focus on is often less important than knowing what 
not to focus on. Learning where to make leaps takes time.

Summary

This chapter introduced some of the core tools and techniques that you will use 
as a software reverse engineer and cracker. Before moving on, take some time to 
practice and get some hands-on experience using the tools. This practice time 
will be invaluable later when you move on to more complex software and more 
advanced RE and cracking techniques.
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Cracking is the art of reversing software to bypass protections or other  
undesirable functionality. This chapter explores some of the key tools and 
strategies used for software cracking, including the use of key generators and 
patching to defeat key checkers.

Key Checkers

One of the most common practices for licensing software is through license keys. 
In a goal to defeat piracy, every installation of the software requires a unique key 
to complete the installation. In the case of software with multiple tiers of fea-
tures, they may have some features always freely available, while others reside 
behind a license wall, or the software may not work at all without a license key.

License keys are a common anti-piracy solution, and they have their advan-
tages. These are two of the most significant:

 ■ License keys are easy to generate and verify.

 ■ The ratio of valid to invalid keys is so small that random guessing is 
unlikely to generate a valid key (assuming a reasonable key length).

Cracking: Tools and Strategies



148 Chapter 10 ■ Cracking: Tools and Strategies

However, like all security, if they are implemented poorly, they can be highly 
susceptible to cracking, and like all security, they are not entirely infallible.  
A sufficiently knowledgeable and motivated cracker could eventually defeat 
or bypass them. However, they’re still one of the stronger forms of protection; 
this is just a reminder that there is no such thing as 100 percent secure software.

Back in the day when offline systems were more common, license checking 
and validation were often done entirely offline, meaning all of the logic to verify 
the key was resident on the system. Now, with prolific connectivity, we often see 
license key checks that consist of both an offline and online component, where 
they reach out to a license server for additional verification. There are a few 
different ways to implement key checks with varying levels of effectiveness.

The Bad Way
In the past, very popular computer games StarCraft and Half-life both used a 
checksum as a license key. Recall checksums are often very simple mathematical 
expressions performed on a binary blob, some as simple as adding all the num-
bers together. In the checksum used by these games, the 13th digit verified the 
first 12.

This meant that a user could enter anything that they wanted for the first 12 
digits and then calculate a 13th to create a valid checksum. This lapse in security 
led to the infamous 1234-56789-1234 key, which was valid for these games and 
used widely to pirate them.

One of the biggest problems in these cases was that the algorithm used to 
calculate the checksum was too simple.

x = 3;
for(int i = 0; i < 12; i++)
{
    x += (2 * x) ^ digit[i];
}
lastDigit = x % 10;

There are two ways to approach cracking this. One is that you run the algorithm 
and calculate the valid value of the last digit as shown previously.

The other is a brute-force attack. Given it was only one digit you had to figure 
out, there are only 10 options for the last digit [0-9]. You can randomly select a 
set of 12 digits and then just guess and check the 10 options for the last one until 
you find success. The infamous 1234-56789-1234 key was so famous because it 
was easy to remember, but by following either of these two approaches (calcu-
lation or brute force), you could generate any number of new keys.
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A Reasonable Way
A brute-force attack against a license key is guaranteed to work. . .eventually. 
The best that a license key can do is waste enough of a cracker’s time that it 
becomes infeasible or impossible to carry out a brute-force attack.

So, how to protect against brute-force attacks? One common option in other 
contexts is a cryptographic hash. For example, a license key could be imple-
mented using one of the following options:

 ■ Username: SHA(username)

 ■ Random value: WXYZ-SHA(WXYZ)

The use of a hash function makes a brute-force attack against this much harder. 
However, it’s trivially easy for a cracker to determine how the algorithm works 
after a look at the code. Depending on your mindset, if you’re an attacker, this 
means leveraging the reverse engineering skills you’ve learned to this point to 
find the algorithm and unravel it, and if you’re a defender, it means this is a 
key piece of code that you need to protect.

An alternative is to use a custom, complex hash rather than a standard one. 
While this is normally a horrible idea in security, it’s not an unheard-of choice for 
this application. The goal isn’t to provide absolute protection, just to slow down 
reverse engineering. For anyone in the security space whose toes are curling at 
the suggestion of making your own hash, just note that this suggestion comes 
with the caveat that you are able to make a decently good one. As a defender, 
keep in mind there are lots of tools out there to do common hashing techniques, 
so those will be all the first things an attacker will try to unroll your key.

Also, find ways to add unique complexity so a key can be used only in a 
unique setting, and not proliferated. Schemes such as concatenating the product 
name and version and computer name within the hashed value adds a solid 
level of complexity. This way, a cracked valid key for one installation doesn’t 
unlock other releases.

A Better Way
Hashes are better, and, if implemented correctly, they can be decent. But there 
are even better options. A great example of this is the approach Microsoft uses 
when generating license keys for its software.

Instead of hash algorithms, Windows uses public key cryptography. With 
public key cryptography, a digital signature can be generated using a private 
key and verified using a public one. This means that a digitally signed license 
key can be verified by an application without exposing sensitive keys.
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When generating its license keys, Windows uses a lot of information about 
the software, including but not limited to:

 ■ Bitness (32, 64)

 ■ Type (home, professional, enterprise)

 ■ Product ID

 ■ Hardware features

Including all of this information helps to lock a product key to a specific 
installation of the software. If you’re interested in more information on the pro-
tocol, there are lots of resources online tearing into Microsoft’s key generation.

Digitally Signed Keys

Digital signatures on license keys, like those used by Windows, make it much 
more difficult to generate fake, valid keys. A valid signature must be generated 
using the private key but can be validated with a nonsensitive public key.

Digital signatures prevent the straightforward generation of license keys and 
present attackers with two options. The first is to leak a legitimate key, which 
could be traced back to a specific user. Alternatively, an attacker can modify 
the program to remove the key-checking code, which increases the time and 
complexity of pirating the software.

The Best Way
The examples presented so far have focused predominately on offline verifica-
tion of license keys, meaning the entirety of the code to verify and unlock the 
software is resident on the system. However, given the prolific connectedness of 
systems these days, a way to add more strength is to add an online component.

This can take many forms, but one you see today is each piece of software can 
be distributed with a license key in the form of a large random number distrib-
uted alongside the software. When the product is installed and registered, this 
value is sent to the license server, which verifies that it is valid and has not been 
used already. For digital software distribution these days, the key you’re sent 
isn’t even valid until after you buy the software, meaning that if you had guessed 
that key 10 minutes before you bought the software, it wouldn’t have worked.

Or you can use hybrid approaches where much of the algorithm to verify 
through hashing or public key cryptography is resident on the system, but then 
there is also a step where the license server is checked to see if that key has been 
used before or if the key has been revoked.

Other Suggestions
The methods introduced align with more of the industry best practices and the 
most commonly used methods. But there is not a one size fits all to security, 
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and some of the following are techniques you could encounter in a cracking 
scenario, or you might find them useful in a defensive scenario if you have 
unique constraints.

Prefer Offline Activation

While the addition of online key servers sounds powerful from a security per-
spective, and it is, it’s worth acknowledging that technique comes with a huge 
amount of manageability and infrastructure pain. Managing key servers is no 
small feat, and they become a beacon for cyberattacks. So, you will still often 
find that many companies aren’t able or willing to bite off that level of chaos, 
so they will still favor going for stronger offline verification. Supporting offline 
key verification eliminates the complexities of managing a key server and is 
inclusive to users without Internet access.

Perform Partial Key Verification

In an offline mode, you have no method to perform revocation and have no 
way to make some keys no longer work. To prevent a single leaked key from 
working on all future versions of your software, check only some of the key.  
A simplistic example would be to check only the first character of each group 
in a license key such as the X, 9, B, and B in X4Z-951-B41-BR0.

If someone releases a key generator for your application, release a new ver-
sion that checks part of the remaining key. For example, switch to checking the 
second character of each group (4, 5, 4, and R). This limits the potential damage 
caused by a single key generator.

Encode Useful Data in the Key

Encoding useful data in the key can help to limit its applicability. For example, 
a key may specify the maximum version of the application that it applies to, 
limiting the impact of a compromised key.

Key Generators

If a piece of software uses a key for activation, crackers will want to build a 
key generator for it. This is true regardless of which type of key activation you 
did. Key generators are then distributed for people to generate a “free” key for 
software.

You’ll see later how to patch software to simply remove a key check, so for 
now focus on making a key generator, and assume you can’t just bypass the key 
check. Key generators typically require a more in-depth analysis of the program 
and a deeper understanding of the key algorithm.
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Why Build Key Generators?
If key generators are more difficult to create, why bother building them? There 
are a few different reasons.

Software can have various defenses that can make patching the more difficult 
route, such as the following:

 ■ Tamper proofing

 ■ Dynamic checks

 ■ Anti-debugging

 ■ Software guards

Also, patching may require releasing a modified copy of the target software, 
which may be watermarked. Watermarking is a technique to trace a piece of 
software back to who originally purchased it. These watermarks can be used 
to trace a cracked piece of software back to the cracker, which is obviously 
something they don’t want.

The software could implement online checks to look for patched/modified 
versions of programs. Alternatively, some software may decrypt itself based on 
the entered key (unpacking, which will be explored in Chapter 13, “Advanced 
Defensive Techniques”), and removing the key check entirely means it won’t 
be able to decrypt.

Key generators are also more future-proof than patching. An application 
developer can’t easily revoke valid keys.

Finally, crackers may choose key generators because they are harder. Patch-
ing in some cases is easy, while building a successful keygen is a challenge that 
carries a certain amount of prestige.

The Philosophy of Key Generation
When cracking key checkers, it is useful to think of the key checker in the form 
of f(u) == g(k), where:

 ■ u is the username entered by the user.

 ■ f is a transformation function on the username.

 ■ k is the key entered by the user.

 ■ g is a transformation function on the key.

In this model, the key check is a validation that f(u) == g(k). In non-math-
speak this means that some transformation/mutation is done on the username 
and then compared to some type of transformation done on the key. In this 
example (and the following examples), the username is the input, but keep in 
mind this can be any combination of things; they could use the version number, 
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computer name, etc. But the idea is something is going into a transformation to 
come up with a result. And that result is compared to the input key, which has 
also gone through some type of transformation (note this transformation could 
be nothing, meaning the result is simply the key, or it could be more hashing 
or mutation). With this model in mind, there are a few potential variants of 
key checks.

Going back to the initial StarCraft/Half Life example, u would actually be the 
first 12 digits of the key, and k is the last digit. In this setup, there is no username 
entered; rather, part of the key is used to check the other part.

Another option is that u, and therefore f(u), is a constant (i.e., hard-coded 
keys). In this setup, there is no username entered; rather, the key is transformed 
and checked against a fixed value. For example, “the sum of all of the digits in 
the key is equal to 1337.”

Cracking Different Types of Key Checks
By reasoning about key checkers in the formula f(u) == g(k), you can start to 
build techniques for cracking different permutations.

Key Check Type I: Transform Just the Username

For this case, the username is transformed using some function, and that is then 
compared to the key that was entered. So, in this case you can consider g() 
causes no mutation to the key. This allows us to simplify our key check to just 
f(u) == k. In this setup, the program transforms the username and validates 
that the transformed value matches the key entered by the user.

To crack this type, locate and extract the transformation function f into a 
key generation application. For example, multiply ordinals of characters in 
username together and match against the key. The key generator will prompt 
the user for the username they desire to use and then perform f(u)and print 
out the valid key.

Key Check Type II: Transform Both

For Type II, you still have a transformation of the username, but, in addition, 
g performs a mutation. The very mathematical way to look at this is that g has 
an inverse. That is, g-1 exists, and g-1(g(k)) == k). The simple way to think 
about this is that g will perform a mutation, and every mutation has a way of 
unmutating it (i.e., do the exact opposite).

In this setup, the program transforms the username, transforms the entered 
key, and validates that the two produce the same results. However, the function 
g can be inverted (“reversed” or “backed out”).
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To crack this type of key check, reverse engineer g and derive g-1. Often, this 
is as simple as “undoing” each transformation on g in reverse order. Then, gen-
erate a key with g-1(f(u)).

For example, assume g(k) = k * 2 + 1000. If so, g-1(h) = (h – 1000) / 2.
In this case, the key generator would prompt for the desired username (as 

with Type I) and perform the f(u), but then the result now is the mutated key, so 
you have to do your unrolling with g-1(h). That final result is then the valid key.

Key Check Type III: Brute Forceable

In Type III, a collision on f(u) can be brute forced through g(k). This is a viable 
approach if the key space is very small or you have a lot of computing power.

In this setup, the program transforms the username, transforms the entered 
key, and validates that the two produce the same results (same as Type II). But 
you instead are looking for a solution to f(u) == g(k) by repeatedly testing 
random or pseudorandom ks.

To crack this type, determine the format of k. Then, extract g into a self- 
contained key generator. Finally, generate random ks until a solution to  
f(u) == g(k) is found.

For example, consider the case where g(k) = CRC32(k). If the key mutation 
is using something so small such as the CRC32 algorithm, then brute force 
becomes pretty trivial on a standard computer. Since CRC32 has such a small 
range of possible values, it’s possible to brute force.

Defending Against Keygens
Key checks may be a combination of these types. For example, the key trans-
formation g may be both brute forcible and invertible.

Key checks generally must fall into one of these categories. Otherwise, there 
would be no way to generate keys in the first place.

Key Check Type I is the weakest. The cracker needs only to extract the algorithm 
from the key checker, with no need to actually RE the algorithm.

Key Check Type III is better. It requires the attacker to extract both algorithms 
and identify a way to brute force the key transformation, which is not always 
obvious.

Key Check Type II is likely best but also the hardest to design well. Cracking 
this requires the attacker to derive the inverse of the key transformation function. 
This may necessitate a deep analysis of the transformation algorithm, slowing 
the attack.

As always, there is no silver bullet. Every key checker can be cracked even-
tually, and the best that a defender can do is slow down the attacker.

.
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Lab: Introductory Keygen

This lab provides experience in creating a keygen for a simple program.
Labs and all associated instructions can be found in their corresponding 

folder here:

https://github.com/DazzleCatDuo/ 

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Introductory Keygen and follow the provided 
instructions.

Skills
This lab practices the use of objdump and the strings utility to generate a  
keygen. Some of the key skills it tests include the following:

 ■ Initial reconnaissance

 ■ Reverse engineering x86

 ■ Key generation

Takeaways
In addition to modifying a program, it’s often possible to crack a program just by 
observing how it works. The right approach is often determined by the program 
constraints, and choosing which to use is an important skill.

Procmon

In reverse engineering, you want to learn as much about how the program 
works as possible. Before jumping to super-fancy debugging, start easy by just 
observing software’s behavior.

Procmon is a tool distributed as part of the Sysinternals suite of tools (avail-
able at http://technet.microsoft.com/en- us/sysinternals/bb842062). This 
repository contains about 60 windows utilities made and freely distributed by 
Microsoft. Note these tools work only on Windows OSs.

Example: Notepad.exe
Try taking a look at what notepad.exe does when you create a new file, change 
the font, and then save some content. To do so, take the following steps:

1. Open Procmon.exe.

2. Launch Notepad.

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
http://technet.microsoft.com/en-us/sysinternals/bb842062
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3. Enter some text into the Notepad document.

4. Click the Format menu and then the Font menu item.

5. In the Font window, change the font to Webdings.

6. In the Font window, change the size to 20.

7. Click the OK button.

8. Save the Notepad document as Example1.txt.

9. Close Notepad.

Stop Process Monitor capture activity by clicking the Capture button, 
as shown in Figure 10.1. The icon should now show an X over the magni-
fying glass. At this point, Process Monitor has captured all File, Registry, and  
Process/Thread events.

Process Monitor captures thousands of events a second, which results in too 
many records to review manually. It’s necessary to filter the results down to 
events of interest. To do so, open the Filter menu by clicking the funnel icon, 
as shown in Figure 10.2.

To see only events related to the process Notepad.exe, define a filter stat-
ing that the Process Name is Notepad.exe, as shown in Figure 10.3. You can 
accomplish this via the following steps:

1. Select Process Name from the Column list box.

2. Select is from the Relation list box.

3. Type Notepad.exe in the Value text box.

4. Select Include from the Action list box.

5. Click the Add button.

6. Click Apply and OK.

Figure 10.1: Halting Process Monitor

Figure 10.2: Filtering events in Procmon
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Filtering based on the process name dramatically decreases the number of 
events. However, it’s still not enough.

To find events of interest, you need to define additional filters. Procmon has 
several categories of events that you can filter on, including the following:

 ■ Registry

 ■ File

 ■ Network

 ■ Process thread

To start, try focusing on the Registry values that Notepad modifies. Process 
Monitor has a handy button for this, as shown in Figure 10.4.

If Notepad has saved values to the Registry, it will create an event entry of type 
'Operation' 'RegSetValue'. By right-clicking entries in Procmon’s log, you can 
choose to include or exclude certain types of events, as shown in Figure 10.5. 
This enables you to further refine your results and focus on events of interest.

Figure 10.6 shows a Procmon entry that seems to be related to the changes to 
the font in Notepad. To see more information, right-click the entry and select 
Properties.

Figure 10.3: Defining a filter in Procmon

Figure 10.4: Filtering on Registry events in Procmon
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Figure 10.7 shows the properties of the event. In the Data field, you can see 
the text “Webdings,” indicating that this is an event triggered by changing the 
Notepad font to Webdings.

How Procmon Aids RE and Cracking
Procmon made it possible to see the Registry changes made by Notepad. However, 
this isn’t all that it can do. Further exploration of the tool reveals a great deal 
of useful information.

Call Stacks

The Properties window for an event has a few different tabs. Clicking over to 
the Stack tab shows the sequence of calls used to reach this point, as shown in 
Figure 10.8.

Looking further down this stack trace, it’s possible to see the point where the 
program left notepad.exe, as shown in Figure 10.9. This transition point from 
application to libraries might be a good starting point for reversing.

File Operations

Procmon also records events for file operations, such as opening, closing, and 
editing files. Figure 10.10 shows an example of this.

Figure 10.5: Including and excluding event categories in Procmon

Figure 10.6: Notepad font change registry event



 Chapter 10 ■ Cracking: Tools and Strategies 159

These file events can provide useful information for reversing. For example, 
they can help with identifying and analyzing configuration files, export functions, 
and proprietary file formats.

Figure 10.7: Event properties in Procmon

Figure 10.8: Stack view in Procmon’s Properties window



160 Chapter 10 ■ Cracking: Tools and Strategies

Registry Queries

The Notepad.exe example showed how to find the Registry operation for chang-
ing the font in Notepad. However, this isn’t the only possible use for registry 
queries.

For example, Figure 10.11 shows that Notepad looked for two keys with the 
word “Security” in them but couldn’t find them. You could add these keys to 
your Registry and place custom values in them to change how Notepad operates.

Resource Hacker

Resource Hacker (also known as ResHacker or ResHack) is a free extraction 
utility or resource compiler for Windows. Resource Hacker can be used to add, 
modify, or replace most resources within Windows binaries including strings, 
images, dialogs, menus, and VersionInfo and Manifest resources. (For tool links, 
visit the tools section of our GitHub site at https://github.com/DazzleCatDuo/ 
X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES.)

Figure 10.9: Stack trace for notepad.exe

Figure 10.10: File operations in Procmon

Figure 10.11: Security Registry queries in Procmon

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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Resource Hacker can be a useful tool for exploring the structure of a binary 
prior to the cracking process. It can be used to find and understand the structure 
of nag screens, key entry screens, help menus, and more.

Resource Hacker can also be used to add functionality to a program before 
or after cracking. For example, it’s possible to add new icons, menus, and skins 
to an existing application.

To get started, open an .exe file in ResHack to explore its strings, images, 
dialogs, menus, etc., as shown in Figure 10.12. Then, click an item in ResHack 
(left) to show how that item would look in the application (right).

Example
Suppose you see the window shown in Figure 10.13 in a program. As a cracker, 
you want to understand how that window would be used by the program.

To find out, open the program in ResHack. Then, use Ctrl+F to search for one 
of the strings used in the dialog box, as shown in Figure 10.14.

Figure 10.12: Sample application in Resource Hacker

Figure 10.13: Password window
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Resource Hacker identifies this dialog box as the “GETPASSWORD2” dialog 
box, as shown in Figure 10.15. Knowing this can help to guide the process of 
reversing the program.

Mini-Lab: Windows Calculator
To try your hand at using Resource Hacker, try rebranding the Microsoft 
Calculator. As shown in Figure 10.16, the Calculator window is titled Calculator. 
Try changing this value to something else.

To start, open the calc.exe executable in Resource Hacker. Then, search for 
the word Calculator, as shown in Figure 10.17.

Figure 10.14: String search in Resource Hacker

Figure 10.15: Identifying a dialog box in Resource Hacker
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The main Calculator window may not be the first result. Keep on searching until 
you find the code defining the Calculator dialog box, as shown in Figure 10.18.

In Figure 10.18, the CAPTION string determines the title on the application 
window. Change this string to rebrand the application as your own.

After changing the CAPTION, click the green arrow button shown in 
Figure 10.19. This will compile the modified Calculator application.

After the application has been compiled, the updated version of the window 
should be shown in the window preview. This should include the modified 
caption, as shown in Figure 10.20.

Compiling the application doesn’t automatically save the modified version. 
To do so, select File ➪ Save, as shown in Figure 10.21.

Figure 10.16: Microsoft Calculator

Figure 10.17: Searching for Calculator in ResHack
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Figure 10.18: Calculator window in Resource Hacker

Figure 10.19: Compiling the modified application

Figure 10.20: Modified window in Resource Hacker
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At this point, you’ve successfully rebranded Windows Calculator. For more 
of a challenge, try the following:

 ■ Use Resource Hacker to resize the window to accommodate your new name.

 ■ Modify the available buttons.

 ■ Modify the calculator background.

 ■ Open and edit other programs in your VM.

Patching

Patching involves modifying a compiled binary to modify code affecting its 
execution. Depending on the situation, sometimes the easiest thing to do is 
patch an application to circumvent its security.

Patching vs. Key-Genning
In some cases, advanced integrity checks or obfuscation might make patching 
difficult. For example:

 ■ Patching an encrypted/packed program on disk is not feasible.

 ■ Patching around dynamic integrity checks (e.g., continuously validated 
checksums) may be too cumbersome.

 ■ The logistics of distributing a patched executable may not be desirable.

Figure 10.21: Saving the modified application in ResHack
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In these situations, you may choose to fall back on key generators instead. 
Otherwise, patching a program to remove its key checks (or any other logic you 
want to avoid) is often the easier approach, when possible.

Where to Patch
Patching can be done in two different places: in memory or on disk.

Patching in memory modifies the machine code in memory. This is use-
ful for reverse engineering attempts because you may need to try dozens (or 
hundreds. . .or more. . .gasp) of things before one works. In-memory patching 
affects only the current execution of the application. Each time you restart the 
application, any in-memory patching will be lost.

Patching on disk modifies the machine code in the compiled binary. This 
is useful once you know what works and affects all future executions of the 
application. It makes the modifications persistent and will be there every time 
the application is launched.

NOPs
Recall the instruction nop. It is a one-byte instruction (0x90) that does nothing.

When patching applications, it is critical to not move the code. In fact, mod-
ifying the size or simply deleting code will crash the application. To remove 
sections of code yet maintain the same size, fill the space with nops.

For those of you who are curious why simply deleting code doesn’t work, 
there are many factors to this, but the most important is that some x86 code is 
relative and some of it is absolute references. Looking at the relative case first: 
this means some code translates to relative things like “jump forward 40 bytes 
from where I am now.” In cases like this, if you remove code between the jump 
and its destination 40 bytes away, you’ve messed up the jump. It will continue 
to jump 40 bytes ahead, except that now it may land in the middle of an opcode 
or skip critical instructions, which then results in a crash. If the code you remove 
is outside of that 40-byte bubble and the jump forward 40 bytes still lands in 
the same spot, then it would have no effect.

Now, consider absolute references. These types of references would look like 
“use the data value at address 0x1234567.” If you remove code anywhere in 
the binary before that address, you’ve caused everything to shift. So, when any 
absolute reference goes to grab its values or perform an absolute jump, all of the 
locations will be wrong, even if all you did was remove 1 byte from the binary.

This means relative references are affected only by adding/removing bytes if 
they occur in between where the reference is made and the destination. How-
ever, all absolute references are destroyed if you shift the application even by  
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1 byte. This is why it’s critical in patching to maintain the size (unless of course 
causing everything to crash is your goal, in which case smash away!).

Circling back to nop, if you want to remove a piece of code, such as causing 
software to skip a key checker, instead of deleting the code, you simply replace 
it all with nops. This maintains the application’s byte alignment but causes 
nothing to happen when it reaches the undesirable code.

Other Debuggers

For reverse engineering with dynamic analysis on Windows, there are numerous 
popular choices. Here are a few:

 ■ OllyDbg

 ■ Immunity

 ■ x64dbg

 ■ WinDbg

Which of these to use depends on the situation and user preference. All of 
them have similar features, and skills in one typically translate to the others 
as well. You’ll dip your toes into a few different pieces of software throughout 
the book; the goal is to give you a taste of many so you can get a feel for when 
each is useful.

OllyDbg
OllyDbg is an immensely popular and powerful debugger. While most debug-
gers focus on debugging, Olly has extended features, including the following:

 ■ Extensibility, plugins, scripting

 ■ Execution tracing system

 ■ Code patching features

 ■ Automatic parameter descriptions for most Windows functions

 ■ Emphasis on binary code analysis (i.e., not based around source debugging)

 ■ Small and portable

These features make OllyDbg excellent for the following:

 ■ Writing exploits

 ■ Analyzing malware

 ■ Reverse engineering
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However, while OllyDbg is a powerful and popular tool, it does have its 
limitations. One of these is that it works only for 32-bit executables, which 
admittedly are a dying breed but not dead yet.

The other is that the OllyDbg interface often takes some getting used to and 
does not feel robust or intuitive at first. However, you should definitely stick 
with it, as it is a powerful dynamic analysis tool.

Immunity
Immunity is a fork of OllyDby, meaning that it has many of the same capabil-
ities. It also introduces many additional features that make it popular for exploit 
developers, such as support for Python scripting.

However, like OllyDbg, Immunity can be used only to debug 32-bit execut-
ables. Also, it inherits OllyDbg’s unintuitive user interface.

x86dbg
x86dbg is a replacement for OllyDbg that supports both 32-bit (x86dbg) and 
64-bit (x64dbg) applications. This wider support means that it is commonly the 
tool of choice when reversing or debugging 64-bit applications.

WinDbg
WinDbg is a debugger that is universally applicable, has strong support, and 
offers excellent debugging symbol support (but which is less useful with RE). 
However, it has a debugging focus and lacks some features of RE-focused tools.

Debugging with Immunity

Because of time and space constraints, exploring all of these debuggers is infea-
sible in this book. Immunity was selected because of its popularity for reverse 
engineering and exploit development. However, it’s important to remember 
that all of these debuggers have similar features, and skills learned in one will 
often translate over to others.

Figure 10.22 shows how Immunity looks in Windows. From the top-left and 
moving clockwise, the four windows show the program’s disassembly, regis-
ters, stack, and memory.

Immunity: Assembly
Figure 10.23 shows a program’s disassembly in Immunity. Note that it shows 
the memory address, machine code, and x86 assembly.
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Figure 10.22: Immunity debugger window

Figure 10.23: Assembly code in Immunity debugger
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To select a line of code, click it. Once a line is selected, Immunity offers var-
ious keyboard shortcuts, including the following:

 ■ ;: Add a comment to the selected line. This is the most important part of 
reverse engineering; it helps you keep track of your work.

 ■ ctrl-a: Auto-analyze the program. Immunity can do a fairly good job of 
adding comments and guessing function parameters.

 ■ <enter>: Navigate to the selected function. For example, if you see the 
assembly call 0x1234 and want to find out what the function at 0x1234 does.

 ■ -: Go back to the previous location. For example, after you’ve analyzed 
function 0x1234 and want to return to where you were.

 ■ +: Go to the next location (after pressing -). For example, if you returned 
to the calling function with -, but then want to go back to function 0x1234.

 ■ ctrl-r: Find cross-references to the selected line. For example, if you have 
a string selected in the memory dump window and want to know who 
uses that string; or if you have the top of a function selected in the disas-
sembly and want to find out who calls that function.

 ■ Double-click address: Set a debugging breakpoint at this address.

Immunity: Modules
In Immunity, you can load the list of executable modules by pressing the e button. 
This shows all the code— including dynamically loaded libraries— that you can 
debug, as shown in Figure 10.24. After opening the list, you can double-click a 
module to go to that code.

When you start Immunity, see what module you are currently looking at 
by checking the eip register. In nearly every case, you will want to start by 
debugging the main executable, not a shared library like ntdll. You can use 
the modules window to switch to the main executable.

Immunity: Strings
It is often useful to find what code is using a certain string in the executable. To 
find all the strings that a program is using, right-click and select Search For ➪ 
All Referenced Text Strings, as shown in Figure 10.25.

In the strings window, right-click and select Search For Text to find a specific 
string, as shown in Figure 10.26. Then, right-click again, and select Search For 
Next to find the next reference to that string. You can double-click a string’s 
address to go to the location where it is used in the disassembly.
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Figure 10.24: Executable modules in the Immunity debugger

Figure 10.25: Strings in Immunity debugger
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Immunity: Running the Program
Click the play arrow to launch the executable under the debugger, as shown in 
Figure 10.27. Execution can be stopped by clicking the X to the left of the play 
arrow or can be paused using the pause button to its right. Execution can be 
restarted via the button with two left-facing arrows.

Figure 10.26: String references in Immunity debugger

Figure 10.27: Launching an executable in Immunity debugger
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After execution has been halted by a breakpoint or the pause button, you can 
click Step Into to progress the program one instruction, as shown in Figure 10.28. 
Alternatively, if you are stopped on a function call but already know or do not 
care about what the function does, click overstep Over, as shown in Figure 10.29, 
to continue debugging after the function returns.

Immunity: Exceptions
Many applications generate exceptions as part of normal execution. For example, 
a try {} except {} block will generate an exception if anything goes wrong in 
the try block. As a debugger, dynamic analysis tools like Immunity typically 
intercept the exception first to see if you want to do anything with it.

But for reverse engineering, you generally don’t want to interfere with normal 
execution. Instead, you want to let the application handle the exception the way 
it normally would. This means you almost always want to pass the exception 
from the debugger to the application.

As shown in Figure 10.30, exceptions are reported at the bottom of the Immu-
nity window, but each debugger is slightly different. In Immunity, press Shift+F9 
to pass the exception and continue execution.

Figure 10.28: Single-stepping in Immunity debugger
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Immunity: REwriting the Program
Immunity has many features to aid in the development of patches to modify 
software behavior. For the purposes of software cracking, this includes making 
program edits to remove key checks, nag screens, etc.

Figure 10.29: Stepping over instructions in Immunity debugger

Figure 10.30: Exceptions in Immunity debugger
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In your first cracks, you will use the process of “noping” out code to remove 
it from the program. This involves replacing program instructions with nop 
instructions.

To do so in Immunity, first select the instruction(s) that you want to remove. 
Then, right-click and select Binary ➪ Fill With NOPs, as shown in Figure 10.31.

This will replace the selected instruction(s) with a series of nops, as shown 
in Figure 10.32.

After modifying the program, test the patch by rerunning the program. If you 
patched the correct portion of code, you should find that the nag screen (key 
check, etc.) has disappeared.

However, if the patch crashes or failed to remove your target, you can easily 
revert your changes and try again. To do so, select the patch button to bring up 
the patches window. Then, right-click your patch and select Restore Original 
Code, as shown in Figure 10.33, to revert your patch and try again.

Once you have identified a working patch, save your changes to the executable 
to make it permanent. As shown in Figure 10.34, right-click and select Copy To 
Executable ➪ All Modifications. When a confirmation window appears, select 
Copy All.

A modified executable window should appear, showing your changes. Close 
the window, and select Yes to save your file. Give your file a new name, such 
as cracked.exe.

If you are confident in your modification, you can run cracked.exe directly. 
If you want to keep debugging with these new changes, you’ll need to reload 
cracked.exe into Immunity.

Figure 10.31: noping out code in Immunity debugger

Figure 10.32: noped code in Immunity debugger
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Lab: Cracking with Immunity

This lab provides hands-on experience with cracking programs using a debugger. 
Labs and all associated instructions can be found in their corresponding folder here:

https://github.com/DazzleCatDuo/ 

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab Cracking with Immunity and follow the provided 
instructions.

Skills
This lab practices reverse engineering, patching, and circumventing software 
protections using Immunity and Resource Hacker. Some of the key skills tested 
include the following:

 ■ Reverse engineering x86

Figure 10.33: Reverting modified code in Immunity debugger

Figure 10.34: Saving a modified file in Immunity debugger

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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 ■ Patching

 ■ Static versus dynamic analysis

Takeaways
Software can be easily modified to add, change, or remove functionality. These 
same techniques can be used to circumvent anything from trivial to advanced 
protections, as long as you understand how the software works.

Summary

Key checkers are intended to protect against the distribution and use of unli-
censed and cracked copies of software, but no defense is perfect. Tools like  
Procmon, Resource Hacker, and debuggers can be used to understand these 
defenses and defeat them through the use of key generators or patching.
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The previous chapter introduced software cracking and patching. This chapter 
provides a more in- depth look at patching and some of the more advanced tools 
that can be used for reversing and cracking.

Patching in 010 Editor

It is often useful to be able to view and edit the hex of a file. If you’ve ever 
tried to open a binary in a text editor, you saw a lot of crazy symbols and blank 
space. This is because the text editor is trying to interpret everything in the file 
as ASCII, which it’s not. Instead, we need an editor that will display as hex, 
not ASCII. There are many different hex editors capable of doing this. One of 
our favorites is 010 Editor. (Find links in the Tools section of our GitHub site 
at https://github.com/DazzleCatDuo/X86- SOFTWARE- REVERSE- ENGINEERING-  
CRACKING- AND- COUNTER- MEASURES).

Open any file (executable, data file, image, music, etc.) to view its hex. 
Figure 11.1 shows a sample executable in 010 Editor.

Figure 11.2 shows the Inspector pane. This shows the various different pos-
sible interpretations of the data at your cursor.

Patching and Advanced Tooling

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES


180 Chapter 11 ■ Patching and Advanced Tooling

If you know what you’re looking for, you can search for it, as shown in 
Figure 11.3. You can search for many different types of data, including the 
following:

 ■ Text

 ■ Hex bytes

 ■ ASCII string

 ■ Unicode string

 ■ EBCDIC string

 ■ Signed/unsigned byte

 ■ Signed/unsigned short

Figure 11.1: Viewing a file in 010 Editor

Figure 11.2: Inspector pane in 010 Editor
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 ■ Signed/unsigned int

 ■ Signed/unsigned int64

 ■ Float

 ■ Double

 ■ Variable name

 ■ Variable value

You can jump to a specific address if you know where you need to go, as 
shown in Figure 11.4. This location of “where to go” can be specified as a byte, 
line number, sector, or short.

Figure 11.3: Searching in 010 Editor

Figure 11.4: Jumping to an address in 010 Editor
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In 010 Editor, you can directly modify the hex. Simply place your cursor and 
start typing to overwrite.

However, 010 Editor understands how important it is to maintain file size. 
When you type values, in 010 Editor it overwrites existing values at that location. 
It does not insert them, which would make the file larger.

CodeFusion Patching

After a researcher figures out how to crack a program, the next step is often 
to create a patcher/cracker utility. This will allow others to crack the same 
program.

CodeFusion is a popular patch generator. It creates a stand- alone execut-
able file that can be used to crack a specific application. (Find links in the 
tools section of our GitHub site here: https://github.com/DazzleCatDuo/
X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES).

To start creating a patcher, launch CodeFusion, and configure the information 
that will appear when the patcher is launched. This information is shown in 
Figure 11.5 and includes the program caption, program name, comments, icon, 
etc. These can be whatever you want.

On the next screen, add the files to be patched, as shown in Figure 11.6. This 
is the executable that you want to crack.

Figure 11.5: CodeFusion start screen

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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Next, add the patch information by clicking the + icon shown in Figure 11.7. 
This is typically the information you learned from Immunity, Cheat Engine, 
IDA, etc. It usually includes an offset to patch, and the bytes to replace. Often, 
the bytes to patch with are 0x90 (nops). On the next page, click Make Win32 
Executable to create an EXE file to patch the target application.

Figure 11.6: Loading a file in CodeFusion

Figure 11.7: Adding patch information in CodeFusion
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CodeFusion will add a new executable alongside the target application. As 
shown in Figure 11.8, run this executable, select the target, and click Start to 
apply the patch and crack the application.

This cracking executable is what a cracking group would often redistribute. 
It is much smaller and more portable than the full, cracked app. Someone just 
needs to have the application installed, download your small patcher, and run 
it, and it will perform the patching to the genuine executable.

Cheat Engine

Cheat Engine is a popular and powerful open- source memory scanner, hex editor, 
and debugger. While the tool is primarily used for cheating in computer games, it 
can also often be valuable for quick dynamic analysis in software cracking. (Find 
links in our tools section on our GitHub here: https://github.com/DazzleCatDuo/
X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES).

Cheat Engine enables searches for values input by the user with a wide 
variety of options. These allow the user to find and sort through the com-
puter’s memory.

Cheat Engine: Open a Process
Unlike other tools, reversing with Cheat Engine doesn’t start with opening an 
executable. Instead, you select a running process to edit.

First, run the program that you want to crack. Then, start Cheat Engine and 
click Select A Process To Open, as shown in Figure 11.9. The Process List window 
appears, and you can select the process to crack and click Open.

Figure 11.8: Launching the patched executable in CodeFusion

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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Cheat Engine: View Memory
Cheat Engine is based heavily around the idea of memory scans.

The main Cheat Engine window is primarily used for scanning memory. How-
ever, for now, focus on some simpler functionality: memory view. As shown in 
Figure 11.10, click Memory View to view the process’s memory.

The memory view provides an easy and powerful way to view, scan, and 
modify a process’s memory. As shown in Figure 11.11, memory view includes 
the disassembly at the top of the screen, an instruction reference in the middle, 
and a hex dump at the bottom.

Figure 11.9: Opening a process in Cheat Engine
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Figure 11.10: Viewing memory in Cheat Engine

Figure 11.11: Memory Viewer pane in Cheat Engine
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Cheat Engine: String References
As discussed, examining the strings in an executable can provide invaluable 
hints regarding its functionality. To view strings in Cheat Engine, select View 
➪ Referenced Strings to get a list of all of the strings used by the program.

Figure 11.12 shows the window that will pop up, where you can click on a 
string to view its cross references. Double- click on a cross- reference address to 
go to where the string is used in the disassembly.

Cheat Engine: REwriting Programs
Recall that noping out a chunk of code is the safest and easiest way to remove 
it without affecting the rest of the program. Cheat Engine makes this easy. To 
bypass an instruction (such as a final conditional jump in a key check), right- 
click the instruction and select Replace With Code That Does Nothing, as shown 
in Figure 11.13.

Cheat Engine is highly interactive. You can immediately try your modifica-
tion in the running program! If your modification didn’t work or if you want 
to undo it, right- click the modified code and select Restore With Original Code, 
as shown in Figure 11.14.

Figure 11.12: String references in Cheat Engine
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Cheat Engine: Copying Bytes
Once you’ve found a working patch, the next step is to copy that patch over 
into an executable file rather than a running process. As shown in Figure 11.15, 
you can right- click the patch location and select Copy To Clipboard ➪ Bytes 
Only to copy those bytes for use by other tools.

Cheat Engine: Getting Addresses
To make a patch, you need to know where in the file the data to patch is. Cheat 
Engine is all about runtime analysis, so it does not know where in the file the 
data is.

To find an address, use 010 Editor to perform a search for the machine code 
you are replacing. That address is the file offset to patch for use in CodeFusion 
or other patchers.

Figure 11.13: noping out instructions in Cheat Engine
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Figure 11.14: Reverting changes in Cheat Engine

Figure 11.15: Copying bytes in Cheat Engine
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Lab: Cracking LaFarge

This lab practices using these tools to patch programs. Labs and all associated 
instructions can be found in their corresponding folder here:

https://github.com/DazzleCatDuo/ 

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab LaFarge and follow the provided instructions.

Skills
This lab provides experience using CodeFusion and Cheat Engine to practice 
the following skills:

 ■ Reverse engineering x86

 ■ Patching and patchers

Takeaways
A variety of tools are available for reverse engineering and cracking; choosing 
the “right” one depends on the challenge at hand and personal preference. 
Crackmes are a (usually) safe, always legal, incredibly addictive way to prac-
tice your cracking skills.

IDA Introduction

If you’ve ever googled reverse engineering tools, IDA is guaranteed to come 
up. It’s the Cadillac of reverse engineering tools.

IDA, aka the Interactive Disassembler, allows for binary visualization of dis-
assembly. It is available under a freemium model where limited features are 
available for free, while some of the more powerful features (or more obscure 
architectures) require a paid license.

Figure 11.16 shows the process of loading a new file in IDA. IDA automatically 
recognizes many common file formats, but if it gets it wrong, you can select 
the generic Binary File. IDA also offers a Processor Type drop- down menu to 
change architectures.

One of IDA’s greatest strengths is its graph view, which shows a visual rep-
resentation of an executable’s x86 assembly and control flows. Figure 11.17 
shows this view and some of the most useful components of it, including a 
memory map of the executable, a list of functions, the logic block view, and 
a graph window.

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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Figure 11.16: Loading a file in IDA

Figure 11.17: IDA graph view
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IDA: Strings
As always, strings are a good starting point when analyzing a new executable. 
However, IDA doesn’t show them by default. Figure 11.18 shows how to access 
the String view by clicking View ➪ Open Subviews ➪ Strings.

Figure 11.19 shows the full list of strings in IDA. IDA shows the text of the 
string itself, its address, and its predicted length.

Figure 11.18: Opening strings view in IDA

Figure 11.19: Strings view in IDA
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Click a string to highlight it. Then, press X or right- click and select Jump To 
Xref To Operand. This will open up a window showing all of the locations where 
the string is used in the program, as shown in Figure 11.20.

Following one of these cross- references will show the disassembly where the 
string is used. As shown in Figure 11.21, IDA understands how string references 
work. When it sees one, it shows the string as a comment.

IDA: Basic Blocks
IDA’s graph view shows code in basic blocks. A basic block is a contiguous 
sequence of instructions uninterrupted by a branching instruction or branch-
ing reference.

Consider the following simple program in pseudocode. Figure 11.22 shows 
what this program looks like when disassembled in IDA.

Figure 11.20: String cross- references in IDA

Figure 11.21: Strings in IDA code view
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int main(int argc, char* argv[])
{
      return argc;
}

IDA: Functions and Variables
IDA understands many calling conventions, including cdecl. It will recognize 
cdecl and knows the first argument always starts at ebp+8. IDA renames that 
offset to arg_0 to make it easier to read. It will do this renaming with all of the 
input variables (arg_X), as shown in Figure 11.23.

This understanding also extends to how local variables are handled on the 
stack. For example, as shown in Figure 11.24, IDA will rename local variables 
to var_X.

Knowing how IDA labels arguments and variables can greatly aid in function 
analysis. For example, with the function shown in Figure 11.25, we can very 
quickly tell it has one local variable and six input variables because we recog-
nize how IDA does its naming conventions.

Often, IDA has no information about the intent or context in which these var-
iables are used, so it labels them sequentially. As you learn about an argument, 
variable, or function, you can rename it by pressing N or right- clicking the 
variable label and selecting Rename.

Figure 11.22: Basic blocks in IDA



 Chapter 11 ■ Patching and Advanced Tooling 195

Figure 11.23: Function arguments in IDA

Figure 11.24: Local variables in IDA

Figure 11.25: Local variables and function arguments in IDA
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IDA: Comments
When reversing an application, it’s essential to be able to track what you’ve 
figured out and done so far. In IDA, pressing ; opens up a box to enter com-
ments, as shown in Figure 11.26.

One tip is to put an identifier like “_x” in all of your comments. This gives 
you something to search for to find all comments.

To start a search for comments, select Search ➪ Text, as shown in Figure 11.27. 
Then, search for “_x” while selecting Find All Occurrences to find all of the 
comments that you’ve placed in the program.

By using a consistent commenting style and searching for comments, it’s easy 
to find places in the code that you’ve already explored. For example, as shown 
in Figure 11.28, you can quickly identify locations that were marked “TODO” 
for later analysis.

Figure 11.26: IDA comment window

Figure 11.27: Searching for comments in IDA
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IDA: Paths
IDA shows three types of paths between basic blocks:

 ■ Red: Path taken if a conditional jump is not taken

 ■ Green: Path taken if a conditional jump is taken

 ■ Blue: Guaranteed path (no conditionals)

For example, consider the following code sample containing a simple if 
statement:

int main(int argc, char* argv[])
{
       if (argc > 1)
              return 0;
 
       return argc;
}

Figure 11.29 shows how this code would look in IDA. After the conditional 
block, the paths diverge. The colors aren’t shown in this book, but the left path, 
which is red in IDA, shows what happens if the jump is not taken. The right 
path, which is green in IDA, is followed if the conditional resolves to false.

Figure 11.28: Search results in IDA

Figure 11.29: Code paths in IDA
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Below this point, several more arrows indicate transitions between basic 
blocks. Since none of these involves conditionals, they will all be blue in IDA.

IDA Patching

IDA is another tool that can be used to patch executables. As an example, con-
sider the following code:

printf("please enter the password\n");
scanf("%s", user_entered_password);
if (strcmp(user_entered_password, correct_password) == 0)
{
       printf("SUCCESS\n");
}
else
{
       printf("Failure\n");
}

This code implements a simple authentication system. It asks a user to enter 
a password and checks the answer. If the answer is correct, it prints SUCCESS; 
otherwise, it prints Failure. While it’s a simplistic example, keep in mind this 
flow of checking the password and going one way if it’s wrong and one way if 
it’s right is very common. In IDA, you can patch the application to defeat this 
password verification.

By default, IDA does not show the machine code in graph view. Unless you’re 
patching, it doesn’t serve much purpose. But when you start to desire patch-
ing, you’ll want to see it. To show machine code, select Options ➪ General to 
open the window shown in Figure 11.30. Then, specify the number of opcode 
bytes to show in graph view (most opcodes don’t exceed 8 bytes, so it’s a good 
practice to set it to 8).

Figure 11.31 shows the application’s password- checking logic in IDA. As 
shown, the left (red) path is taken if the passwords match, while the right (green) 
path is taken if they don’t.

The instruction that decides which jump to take is jnz. Recall that jnz stands 
for “jump not zero.”

This password check could be defeated in a couple of different ways. One 
option is to try to figure out what needs to be “not zero.” This means figuring 
out what two values it’s comparing so you can potentially make a valid key 
or a cracker.

An easier alternative is to use your knowledge of x86 to patch the applica-
tion. As is, the application evaluates a condition and performs a jnz (0x75) if 
the password is incorrect. But what if you did the exact opposite? Changing 
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this jnz to a jz (0x74) will reverse the logic, causing the application to accept 
only incorrect passwords. With the logic flipped, an incorrect password would 
result in success and a correct one would result in failure.

To change the instruction, highlight it and click Edit ➪ Patch Program ➪ 
Change Byte. Then, in the Patch Bytes window shown in Figure 11.32, change 
the first value from 74 to 75.

Figure 11.33 shows how the application will look after the patch is applied. 
The single bit that was changed will be highlighted in IDA, and the meaning of 
the two paths after the jump will be reversed. Now, the application will work 
for anything except the correct password.

Figure 11.30: Showing opcode bytes in IDA

Figure 11.31: Password- checking code in IDA
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Lab: IDA Logic Flows

This lab provides an introduction to using IDA for reversing. The lab files are 
on the Windows VM in the ida_logic folder on the Desktop. Inside this folder 
will be several binaries. Find out which of them is:

 ■ if

 ■ Multipart if ( i.e., if(cont1 && cond2))

 ■ while loop

 ■ for loop

 ■ do while loop

Figure 11.32: IDA Patch Bytes window

Figure 11.33: Password- checking logic in IDA after patching
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Skills
This lab provides practice using IDA to reverse engineer control flow graphs. 
The goal is to learn to quickly identify high- level coding constructs based  
on their control flow patterns.

Takeaways
Analyzing a program’s control flow can make it easier to quickly understand 
what is happening inside of code. Getting good at recognizing these flows 
quickly can vastly improve your reverse engineering ability.

Ghidra

Ghidra is a static analysis tool released in 2019 by the NSA. It has many simi-
larities to IDA, but unlike IDA, it is free and open source. In many situations, 
Ghidra is an adequate replacement to IDA.

IDA has a much longer reputation in the space, but Ghidra is also immensely 
powerful and in many cases has a lot of the same features. This example demos 
IDA given its long history in the reverse engineering space, but everything 
shown can also be done in Ghidra. The tools are similar enough that skills in 
one will often transfer over. Try Ghidra out for some of the later, open- ended 
labs in this book and your own practice.

Lab: Cracking with IDA

This lab takes a look at a more complex application in IDA. Labs and all asso-
ciated instructions can be found in their corresponding folder here:

https://github.com/DazzleCatDuo/ 

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab Cracking with IDA and follow the provided 
instructions.

Skills
This lab practices using IDA to crack large, real- world applications. The goal is 
to learn to quickly identify points of interest and to prioritize multiple cracking 
approaches.

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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Takeaways
Real- world programs are too large for uniform, fine- grained analysis. Triage is 
critical to finding the points of interest.

Multiple opportunities are usually available to a cracker. Selecting which to 
pursue can save (or cost) significant time.

Summary

This chapter explored some of the most widely used tools for reversing and 
cracking. Take the time to become familiar with them. It’ll pay off in the long run!
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How do you defend against cracking? To start, it’s essential to have a good key 
check design (don’t pull a Starcraft/Half-Life). From there, you can implement 
additional defensive options.

However, it’s important to remember that there is no such thing as uncrackable 
software. As a defender, your job is to slow attackers down in the critical parts 
of your software and make them frustrated enough they go to a different target.

Like many things in cybersecurity, you just don’t want to be the low-hanging 
fruit. “When swimming in shark-infested water, you don’t have to be the fast-
est. . .just faster than the guy next to you.”

Obfuscation

Obfuscation is the practice of hiding the intended meaning of code by purpose-
fully making logic ambiguous and unclear. It can be valuable for slowing reverse 
engineering to do the following:

 ■ Slow cracking

 ■ Slow tampering

 ■ Protect intellectual property

Defense
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Done well, obfuscation can make code essentially unreadable. For example, 
the following C code (available from www.ioccc.org/1988/phillipps.c), when 
compiled and run, prints out the lyrics to the entire 12 days of Christmas song. 
It was one of the IOCCC winners, which is a competition to hand-obfuscate 
code. Looking at it makes my brain hurt, and I can’t guess at how long I’d have 
to reverse engineer the code before I figured out what it did.

#include <stdio.h>
main(t,_,a)
char
*
a;
{
       return!
 0<t?
t<3?
 main(- 79,- 13,a+
main(- 87,1- _,
main(- 86, 0, a+1 )
 +a)):
 1,
t<_?
main(t+1, _, a )
:3,
 main ( - 94, - 27+t, a )
&&t == 2 ?_
<13 ?
 main ( 2, _+1, "%s %d %d\n" )
 :9:16:
t<0?
t<- 72?
main( _, t,
"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,
       /n{n+,/+#n+,/#;\
#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l q#'+d'K#!
      /+k#;\
q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' 
      i;# ){nl]!/n{n#'; \
r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#\
\
n'wk nw' iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlwb!/*de}'c ;;\
{nl'- {}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;\
#'rdq#w! nr'/ ') }+}{rl#'{n' ')# }'+}##(!!/")
:
t<- 50?
_==*a ?
putchar(31[a]):
 main(- 65,_,a+1)
:

https://www.ioccc.org/1988/phillipps.c
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main((*a == '/') + t, _, a + 1 )
:
 0<t?
 main ( 2, 2 , "%s")
:*a=='/'||
 main(0,
 main(- 61,*a, "!ek;dc i@bK'(q)- [w]*%n+r3#l,{}:\nuwloca- O;m .vpbks,
       fxntdCeghiry") 
 ,a+1);}

The concept of obfuscation has also made its way into popular culture. The 
following quotes are from a scene in one of the James Bond movies, Skyfall when 
Q is attempting to get into Silva’s laptop.

 ■ “There are algorithms and encryptions and asymmetrics!”

 ■ “Looks like obfuscated code to conceal its true purpose. Security through 
obscurity!”

Obfuscations can be applied by hand or automatically to a program at var-
ious stages of its life cycle, including the following:

 ■ Source code

 ■ Bytecode

 ■ Object code

 ■ Binary executable code

Evaluating Obfuscation
When evaluating options for obfuscation, there are a few different factors to 
consider:

 ■ Potency: How much obfuscation is applied to the program

 ■ Resilience: How well-obfuscated code holds up to attack from reverse 
engineering tools

 ■ Stealth: How well-obfuscated code blends in with the rest of the program

 ■ Cost: Performance penalty of an obfuscated application

In general, these factors tend to work against each other. For example, the 
more potent the obfuscation is, the less stealthy it typically is.

In practice, performance cost is often the limiting factor. However, almost 
all obfuscations allow some degree of scaling/tuning based on requirements.
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Automated Obfuscation
Obfuscation can be performed manually. However, it’s almost always better to 
use tools to obfuscate the code. Some of the common obfuscation techniques 
include the following:

 ■ Name mangling

 ■ String encryption

 ■ Control flow obfuscation

 ■ Control flow flattening

 ■ Opaque predicates

 ■ Instruction substitution

Name Mangling

Name mangling involves obfuscating function and variable names. This can be 
done a few different ways, including the following:

 ■ Replace with gibberish (get_key -> aVJ230AM)

 ■ Replace with misleading name (get_key -> draw_screen)

 ■ Replace with nondescriptive name (get_key -> a)

After mangling, the purpose of functions and variables is no longer immedi-
ately apparent. For example, consider the following code sample:

public static void SelectionSort <T> (T[] data, int size) 
       where T: IComparable
{
       for (int num1 = size – 1; num1 >= 1; num1- - )
       {
             T local1 = data[0];
             int num2 = 0;
             for (int num3 = 1; num3 <= num1; num3++)
             {
                    if (data[num3].CompareTo(local1) > 0)
                    {
                          local1 = data[num3];
                          num2 = num3;
                    }
             }
             T local2 = data[num2];
             data[num2] = data[num1];
             data[num1] = local2;
       }
} 
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After mangling, this might look something like the following:

public static void a <a> (a[] A_0, int A_1) where a:IComparable
{
       int num1 = A_1 – 1;
Label_004D:
       if (num1 < 1)
       {
             return;
       }
       a local1 A_0[0];
       int num2 = 0;
       int num3 = 1;
       while(true)
       {
             if (num3 <= num1)
             {
                    if (A_0[num3].CompareTo(local1) > 0)
                    {
                          local1 = A_0[num3];
                          num2 = num3;
                    }
             }
             else
             {
                    a local2 = A_0[num2];
                    A_0[num2] = A_0[num1];
                    A_0[num1] = local2;
                    num1- - ;
                    goto Label_004D;
             }
             num3++;
       }
}

In the original, it is relatively easy to determine that the code is a sort algorithm 
even without the function name. However, doing so after mangling is much harder.

String Encryption

Another obfuscation technique is for the obfuscator to encrypt strings when the 
executable is built. A decrypt function in the code will then decrypt individual 
strings as needed at runtime. This renders tools like IDA’s string view unusable.

String encryption can have a dramatic effect on code readability. Consider 
the following code:

public a() {
       this.a = "Hi, my name is Paul."
}
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public static void a() {
       a a1 = new a();
       Console.WriteLine("Enter password: ");
       string text1 = Console.ReadLine();
       if (!text1.Equals(a1.a))
       {
             Console.WriteLine("Incorrect password.");
       }
       else
       {
             Console.WriteLine("Correct password.");
       }
       Console.ReadLine();
}

After string encryption, this code might look like this:

pubic a() {
       int num1 = 5;
       this.a = 
a("\ue6ad\u9eb1\u94b3\uc1b7\u9ab9\ud2bb\uadbf\ua7c1\ue4c
      3\uafc5\ubbc7\ueac9\u9ccb\uafcd\ua5cf\ubed1\ufad3", num1;
}
 
public static void a()
{
       int num1 = 13;
       a a1 = new a();
       Console.WriteLine(a("\uf3b5\ud6b7\uceb9\uccbd\ue0bf\ub2c1\ua5c3\u
             b5c5\ubbc7\ubdc9\ua3cb\ubccd\ub4cf\ue8d1\uf4d3, num1));
       string text1 = Console.ReadLine();
       if (1text1.Equals(a1.a)) {
                Console.WriteLine(a(\uffb5\ud8b7\ud3bb\uccbd\ub2bf\ua7c1
                    \ua7c3\ub2c5\ue8c7\ubac9\uadcb\ubdcd\ua3cf\ua5d1\ubb
                    d3\ua4d5\ubcd7\uf4d9", num1));
       }
       else
       {
               Console.WriteLine(a("\uf5b5\ud7b7\uc8b9\ucebb\ua3bf\ub6c1
                    \ue4c3\ub6c5\ua9c7\ub9c9\ubfcb\ub9cd\ubfcf\ua0d1\ub0
                    d3\uf8d5", num1));
       }
       Console.ReadLine();
}

In the original, the strings make it easy to determine that this is authentica-
tion code (which is often very interesting to attackers). Without these strings, 
the logic of the code is much more difficult to figure out. Keep in mind one of 
the biggest struggles to cracking an application is finding the relevant code. In a 
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binary with hundreds of thousands of lines of code, only five might be related to 
the key checker, and using tools like strings is a powerful way to quickly hone in 
on those five lines. Taking away strings is quite painful to the reverse engineer.

Control Flow Flattening

With this obfuscation technique, the control flow of each function is “flattened.” 
This includes the following steps:

1. The function is collapsed into a switch statement within an infinite loop.

2. Each basic block of the original flow is assigned a state number.

3. A switch statement selects between basic blocks, dispatching them in the 
correct order.

Figure 12.1 shows how the flattening process transforms an application in 
IDA. While the logic is the same, the control flow is much harder to analyze.

Opaque Predicates

Opaque predicates add junk code interleaved with real code. The junk code 
never executes, while the real code always executes. However, to a reverse engi-
neer, this is a good way to distract them with useless code, making them spend 
hours reverse engineering junk code that is essentially irrelevant. Figure 12.2 
shows an example of this in IDA.

The path is determined by an if statement that always resolves to the same 
value. However, it can take time to identify (an “opaque predicate”), slowing 
analysis.

Figure 12.1: Control flow flattening in IDA
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Consider the following statement:

if ( (a<<1)%2 ) { b = a * b + a; } else { a = a + b; }

Where is the junk code here?

Instruction Substitution

Instruction substitution involves replacing easily identified instructions with 
complex ones that perform the same action. For example, consider the follow-
ing code:

sub edx, 0x192A6C72
neg ecx
sub edx, ecx
add edx, 0x192A6C72

What was the original operation?

Obfuscators
Obfuscators typically provide “knobs” that allow the developer to tweak the 
level of obfuscation. The reason for this is that more obfuscation is not always 
better. In general, increasing obfuscation decreases execution speed and increases 
file size. Also, drastically increasing obfuscation does not substantially increase 
the difficulty of reverse engineering. Balancing usability and security requires 
finding a middle ground.

If you manage to do that, obfuscation can be a valuable tool, especially for 
code that is otherwise trivial to decompile (such as the JIT languages discussed 
earlier, e.g., .NET, etc.). However, it’s also important to ensure that the tool you 
are using does not also provide an easily accessible de-obfuscator.

Figure 12.2: Opaque predicates in IDA
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For general-purpose obfuscation, OLLVM can be a good starting point. This tool 
has a few benefits, including the fact that it works with the LLVM intermediate 
representation (IR) and supports all LLVM front ends (gcc, clang) and many 
source languages (C, C++, C#, Lisp, Fortran, Haskell, Python, Ruby, etc.).

The use of OLLVM is not recommended for production code. However, it 
can be a good basis for custom obfuscators or simply learning/playing with 
obfuscation.

In addition to OLLVM, there are numerous language-specific obfuscator tools 
and tricks. Some examples include Dotfuscator for C# and Proguard for Java.

For JavaScript programs, tools such as YUICompressor and UglifyJS can be 
used for obfuscation. In general, minimizers, simply as a byproduct, introduce 
some reasonable level of obfuscation.

Python code can be compiled to bytecode to remove some variable names and 
comments. Then, the bytecode can be obfuscated and released with a custom 
interpreter. Some Python obfuscators include Tigress, BitBoost, and Opy, but 
these are less popular than the ones mentioned earlier.

Defeating Obfuscators
Obfuscators are designed to protect against reverse engineering by making 
it more difficult and time-consuming to perform. However, obfuscation isn’t 
perfect, and as stated many times previously, motivated crackers can eventu-
ally defeat it.

Some of the ways that a reverse engineer can speed up the process of ana-
lyzing an obfuscated binary include the following:

 ■ Run traces to identify real versus fake code

 ■ Use symbolic analysis to simplify complexity

 ■ Write custom scripts to remove obfuscations

Lab: Obfuscation

This lab explores obfuscation techniques. T Labs and all associated instructions 
can be found in their corresponding folder here:

https://github.com/DazzleCatDuo/ 

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab Obfuscation and follow the provided instructions.

Skills
This lab provides experience in circumventing obfuscation techniques using  
objdump. The goal is to understand the impact of common code defense techniques.

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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Takeaways
Obfuscation techniques will slow down— but not defeat— cracking. However, 
remember that sometimes slowing down is enough. Advanced reverse engineers 
often have tools to automatically circumvent common obfuscations.

Anti-Debugging

Debugging is often the fastest way to reverse engineer an executable. Anti-
debugging is a series of techniques to try to stop someone from having the 
ability to dynamically analyze your application with a debugger. There are 
many techniques in this space, but most of them are geared at trying to check 
for the presence of a debugger. A few common anti-debugging checks include 
the following:

 ■ Memory checks

 ■ CPU checks

 ■ Timing checks

 ■ Exception checks

 ■ Environment checks

As with most security controls, there are usability trade-offs to anti-debugging, 
code size and performance being the two most painful side effects. Because of 
this, anti-debugging functionality is often added only selectively, reserving its 
use for the code most likely to be attacked (key checkers, sensitive IP addresses, 
etc.). But as with all security there are pros and cons; if you build a bunch of anti-
debugging checks around your sensitive code, you’re also painting a bull’s-eye 
telling an attacker exactly where the interesting stuff is. So, while they might not 
be able to debug it, they now know exactly where to focus with static analysis 
techniques. But that doesn’t mean it’s not worth doing; static analysis might 
take 100x longer than dynamic, so even if you paint arrows to your sensitive 
code, forcing them to do it statically can still be a powerful tool.

The main goal with anti-debugging is to identify when a debugger is attached 
and take an action. The most commonly used actions include the following:

 ■ Forcibly disconnecting the debugger

 ■ Exiting the program

 ■ Executing red herring code to waste an attacker’s time

IsDebuggerPresent()
IsDebuggerPresent  is a memory check for a debugger. The function 
IsDebuggerPresent, which is located in Windows.h, returns true if a program 
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is being run under a debugger. The following code shows an example of how 
it is used to exit an application if a debugger is attached:

if (IsDebuggerPresent())
      exit(1);

A check using IsDebuggerPresent can be defeated by placing a breakpoint 
at the instruction right after the function returns. When the breakpoint triggers, 
set the value of eax to 0, which tells the program that no debugger is attached. 
Remember that eax holds the return value. Returning a 1 is undesirable, because 
that means it detected the debugger, so instead make it return a 0. While that 
seems trivial, keep in mind the game is to just make it harder. If your code has 
100 of these checks, attackers wanting to debug have to track each of these 
down and either manually breakpoint and change the return value every time 
or start to get custom scripts going to do this change for them. Is that annoying 
as an attacker? Yup.

Debug Registers
An application can also make use of the CPU’s debug registers to perform a 
check for a debugger. Recall that the debugging section discussed software and 
hardware breakpoints. A hardware breakpoint uses CPU hardware registers to 
set itself.

These hardware breakpoints use debug registers (in x86: DR0, 1, 2, 3, 6, 7) 
instead of memory modifications. It’s possible to detect debugging by exam-
ining these registers.

For example, consider the following code sample. It checks to see if any of 
the debug registers are set, indicating a hardware breakpoint.

if (GetThreadContext(hThread, &ctx))
       if ((ctx.Dr0 != 0x00) || ... || (ctx.Dr7 != 0x00))
              exit(1);

The call to GetThreadContext() is crucial to this anti-debugging technique. 
For those looking to bypass this technique, place a breakpoint after this call and 
modify the context structure, setting the observed values of all of the debug 
registers to 0x0. Again, is it doable to bypass? Yes. Is it annoying to an attacker 
to have to keep doing these modifications? Yup. An annoyed attacker equals 
success to a defender! Also recall we discussed that IDA 6.3 and above support 
hardware breakpoints. These breakpoints don’t use the debug registers and 
instead use page permissions. In other words, this type of anti-debugging check 
won’t catch a hardware breakpoint.
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RDTSC
RDTSC stands for the x86 instruction Read Timestamp Counter. This counter 
can be used to read a timestamp from the CPU. This has lots of interesting uses, 
but one of them is to perform a timing check for a debugger.

When running an application (with no debugger), the CPU is very fast, but 
when a debugger is attached, it isn’t. Even if you’re not stepping and you’re just 
letting the code run, it’s orders of magnitude slower than just letting the CPU 
go. And it’s even slower if you’re doing something like single-stepping through 
the code. With RDTSC, an application can take timestamps before and after a 
block of code and measure how long the code took to execute. If the delta is 
large, it’s likely that the code hit a breakpoint or was being manually stepped 
through with a debugger.

The following pseudocode shows how RDTSC could be used to detect a 
debugger:

a = __rdtsc();
keycheck();
b = __rdtsc();
if (b -  a > 0x10000)
      exit(1);

To defeat this type of anti-debugging check, you could break on the second 
call to RDTSC. You could then modify the value of either a to be closer to b or 
b to be closer to a. Essentially, make the difference between the two very small 
so it assumes execution went as planned. Bypassable? Yes. Annoying to have 
to patch every time you debug? Yes!

Invalid CloseHandle()
The use of an invalid call to CloseHandle is an example of an exception check for 
a debugger. The Windows CloseHandle function throws an exception if called 
with an invalid handle while running under a debugger (and not otherwise). 
An application can use this knowledge to call CloseHandle on an invalid handle 
to detect the presence of a debugger.

The following code demonstrates how CloseHandle can be used to detect a 
debugger:

HANDLE hInvalid = (HANDLE)0xDEADBEEF;
__try { CloseHandle(hInvalid); }
__except (EXCEPTION_EXECUTE_HANDLER) { exit(1); }

To defeat this check, set a breakpoint on CloseHandle. When the breakpoint 
is triggered, modify the argument to INVALID_HANDLE_VALUE.
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Directory Scanning
Directory scanning is an environment check for a debugger. It involves scanning 
the file system for installations of common debuggers and cracking tools. If 
these tools are found, then the application can choose to exit.

However, this is an indiscriminate search, and these tools may not be actively 
debugging the application. As a result, it hurts legitimate users of these tools.

To defeat this check, set a breakpoint on the directory traversal. Then, mask 
out the tool directories so that the application doesn’t see or search them.

Offensive Anti-Debugging
Anti-debugging techniques need not be passive detection of debuggers. Many 
“active defense” approaches exist, including the following:

 ■ NtUserBlockInput: Block keyboard input to the attached debugger.

 ■ NtUserFindWindowEx: Get a handle to the debugger window.

 ■ Debugger-specific attacks: For example, IDA versions older than 7.0 crash 
at about 10,000 instructions without a branch.

Many more options exist. For offensive anti-debugging, first you need to 
recognize the debugger is there, and then you take some type of offensive 
action. Open-source plugins are available to help, including some used in the 
following lab.

For defensive anti-debugging, it’s important to remember that you don’t 
need to reinvent the wheel. Ready-made solutions are available, including free, 
open-source Windows anti-debugger checks.

Defeating Anti-Debugging
Like other software defenses, anti-debugging code can be defeated (though if 
done right, it’s painful). The first step is to find and reverse engineer the anti-
debug check. Often, this is accomplished by working backward from where 
you got caught using the debugger.

Once you’ve identified the anti-debug code, you have a few different options 
for defeating it, including the following:

 ■ Removing the check via nops

 ■ Placing a breakpoint on the check and modifying memory/registers to 
mask the debugger

 ■ Using built-in debugger plugins or scripts
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In general, it’s stealthier to mask the debugger immediately at the anti-debug 
check. For example, if an application is using IsDebuggerPresent, modify the 
return value of IsDebuggerPresent rather than messing with the if statement 
or exit code designed to use that value.

Lab: Anti-Debugging

This lab provides practice in defeating anti-debugging techniques. Labs and all 
associated instructions can be found in their corresponding folder here:

https://github.com/DazzleCatDuo/ 

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab Anti-Debugging and follow the provided 
instructions.

Skills
This lab uses x64dbg to circumvent anti-debugging techniques. The goal is to 
understand the impact of common defensive coding techniques.

Takeaways
Again, slowing down a reverse engineer is often enough; defenses don’t need 
to be perfect. However, skilled reversers will have tools to overcome common 
defensive techniques.

Summary

Developers want to defend themselves and their code against reversers and 
crackers. This chapter explored some of the common methods for accomplishing  
this, including obfuscation and anti-debugging protections.

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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The previous chapter presented some basic techniques for protecting an appli-
cation against reverse engineering and cracking. This chapter demonstrates 
some more advanced techniques that are more difficult to defeat, including 
tamper- proofing, packing, virtualization, and the use of cryptors.

Tamper- Proofing

One of the powerful cracking techniques we’ve covered is patching, both for 
long- term cracking but also in the aid of reverse engineering. Tamper- proofing 
is a series of techniques geared toward making software more difficult for an 
attacker to modify. Some common approaches include the following:

 ■ Hashing

 ■ Signature

 ■ Watermark

 ■ Software guards

All of the following techniques have ways of being defeated, but (and I can’t 
stress this enough) just because they have ways of being defeated doesn’t mean 
they are not worth doing. Each of them provides a layer of defense in depth, 
and even if the method for defeating them fits into a few sentences, this doesn’t 
mean it’s easy in practice.

Advanced Defensive Techniques
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Hashing
An application can use hash functions to implement tamper- proofing via the 
following steps:

1. Compute a hash of the software.

2. Embed the hash in the software.

3. Have the software check its own hash before executing.

4. Any modifications to the software modify the hash.

The defense relies on the fact that changes to the application will cause the 
hash check to fail. To defeat this, an attacker will need to make their changes 
and then recompute the hash after modifications and changing the checked 
value or removing the hash check entirely.

Signatures
Digital signatures can provide strong data integrity and authenticity protec-
tions. They use public key cryptography where a public and private key pair 
is generated. To use them for tamper- proofing, follow these steps:

1. Sign the software with a private key, creating a signature.

2. Embed the signature in the software.

3. Have the software check its signature with your public key before executing.

4. Any modifications to the software make the signature invalid.

One of the key benefits of digital signatures is that it is effectively impos-
sible to generate a valid signature without knowledge of the private key. To 
defeat this type of protection, an attacker would have to remove the signa-
ture check entirely or get ahold of the private key so they can regenerate a 
valid signature.

Watermark
To implement watermarking, each purchaser of your software receives a unique 
version of the executable, where modifications are made to the following:

 ■ Instruction order

 ■ Function names

 ■ Parameter order

 ■ Instruction substitution

 ■ Etc.
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The specific changes “watermark” that instance, allowing you to trace it back 
to its owner, as well as detect modifications. Also, any modifications to the soft-
ware taint the watermark, making them obvious.

For an attacker to defeat this protection, they will need to identify water-
marked sections. Then, replace them with an alternate mark to hide the source 
of the modified software.

Guards
With guards, code inside the program checks sensitive areas for modification. 
For example, the code may specifically look at a critical jump to make sure it 
still jumps to the intended location. Common areas to monitor with guards 
include key checks, jump instructions, other guards, etc.

Any modifications to these sections are caught by the guards. The guards 
will then change the software’s behavior (exit, change paths, undo modifi-
cations, etc.).

This defense relies on the fact that the guard is present and able to modify 
the software as needed. If an attacker wants to defeat this technique, they will 
need to remove the software guard code.

Packing

Packing is a broad term referring to techniques commonly used on executables 
to compress and obfuscate their contents. Some common packing techniques 
include the following:

 ■ Compression/encryption of data sections

 ■ Scrambling code sections

 ■ Compression/encryption of code sections

 ■ Anti- reverse engineering

One of the main advantages of packing is that it makes reverse engineering 
harder. For example, a packer may include features that address many of the 
common reverse engineering threats, including the following:

 ■ Anti- debugging: Packers can conceal the use of IsDebuggerPresent, 
making it more difficult to detect.

 ■ Anti- virtualization: Packers can detect when an application is being 
virtualized in a platform such as VMware and conceal detection code.

 ■ Anti- dumping: Packers can erase headers in memory, making it difficult 
to dump memory.
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 ■ Anti- tampering: Anti- tampering can be implemented via checksums. 
This includes both common ones (rolling checksum, CRC32, MD5, and 
SHA- 1) and others (Tiger, Whirlpool, MD4, Adler).

Packers can use encryption to conceal their code. Often, this involves simple 
algorithms, such as bitwise operators (XOR/ROL/...), LCG, RC4, and Tea. 
However, more advanced encryption algorithms (DES, AES, Blowfish, Trivium, 
IDEA, ElGamal, etc.) can also be used. If an application has been packed in 
such a way that its code and data sections are encrypted, if you were to drop 
it into one of the disassemblers or hex editors, you’d see only a small section 
of code and a lot of nonsensical junk. The tiny section of code that is available 
is the unpacker. For the code to run, it will need to unpack itself in memory at 
runtime, but this means static analysis can’t see the rest of the code.

Packers can also use mutators (obfuscation), which alter code while keep-
ing the same instruction set and architecture. Some mutations that might be 
used include reflowing and oligomorphism, or other obfuscation techniques  
discussed in Chapter 12, “Defense.”

How Packers Work
The packer (a stand- alone tool) packs an executable (compresses, obfuscates, 
etc.). Then, the packer adds an unpacker to the beginning of executable. When 
the executable is run, the unpacker will be the first code that is run, and it will 
unpack the original code and data into memory (and only memory).

Figure 13.1 shows what a packed executable will look like in IDA. IDA sees 
the initial jump to the unpacker; however, the rest of the code looks like data.

Is This a Strong Protection?
In the following sections, we will talk about some protection techniques and ask 
the question of if they are a strong protection. The assessments are meant to, at a 
very high level, bucket which areas each protection has the strongest impact. The 
focus of our book is predominately offensive, but we felt it important to take a 

Figure 13.1: Packed code in IDA
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quick look at some of the defenses. In each section, to evaluate the effectiveness 
of an anti- cracking defense, we will use something called the CIA triad (CIA 
stands for confidentiality, integrity, and availability). For those not familiar with 
this, it’s a common way to think about security controls, as not all security con-
trols cover all three parts of the triad, so it’s important to know which is useful 
in each pillar. Integrity is the authenticity of something. Is it as it was originally 
intended, or has it been modified? Confidentiality is the ability of something to be 
accessible to only authorized parties. Availability is the level to which something 
is available to perform its intended function. These three together are commonly 
known as the CIA triad. Evaluating packers against the CIA triad:

 ■ Confidentiality: Yes, aside from the unpacking portion of the code, the 
rest of it is in nonreadable format.

 ■ Integrity: Yes, modifications to the binary would cause corruption of the 
packed sections, causing likely application failure.

 ■ Availability: Packers can have a negative effect on performance, which 
can affect availability. However, if configured carefully, this effect can be 
minimized.

Defeating Packing
So, how can packers be defeated? Debug the program and watch for the program 
to decrypt in memory. Once it is unpacked in memory, you can analyze it, but 
any patching done will be viable only on the unpacked binary. Patching can’t 
be saved back to the packed binary.

One natural thought that occurs to people is once it’s unpacked in memory, 
can’t I just memory dump that out to a new unpacked binary? This is techni-
cally possible but difficult to do. Applications include a lot of startup code, and 
getting it loading in the right spot in memory, setting up the stack, etc., doesn’t 
naturally come from dumping memory and just calling it an EXE.

Another option is to see if you can unpack the program. Some of the common 
packers out there have unpacking tools that can be used to reverse the protec-
tions put in place; some examples include UPX, MEW, and ASPack.

However, there may be no stand- alone unpacker, and the unpacking code exists 
only in the packed executable. However, that doesn’t mean we’re stuck! There 
are a number of great plugins and tools built specifically for this purpose, such 
as OllyDumpEx and ImpRec, which aim to reconstruct the import table. This is a 
complex but doable process, but not the focus of our book. However, if this is of 
interest, there are some great blogs to be found online on import reconstruction.

PEiD
Often when approaching a file, it can be difficult to figure out what types of 
manipulations were done to it. If you somehow know out of the gate it was 
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packed with a certain tool, then it’s easy to start down that path. But cracking 
doesn’t typically come with a handy playbook telling you what defenses are in 
place. PEiD is a tool to detect most common packers, cryptors, and compilers 
for portable execution files (e.g., applications). It can detect the signatures of 
more than 470 different obfuscation tools. Another more recent tool in this space 
is Detect it Easy.

As we’ve mentioned, many defensive tools such as packers and cryptors 
have unpackers and decryptors as well. Identifying the one used can reduce 
analysis time by an order of magnitude by allowing you to strip away many of 
an application’s protections.

Figure 13.2 shows an example of using PEiD. To start, select the file to check. 
PEiD will then show the details of its packing, crypting, and compiling.

Lab: Detecting and Unpacking

This lab explores how to detect and defeat the use of a common packer. Labs 
and all associated instructions can be found in their corresponding folder here:

https://github.com/DazzleCatDuo/ 

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab Detecting and Unpacking and follow the provided 
instructions.

Skills
Packers are a common protection against reversing. This lab explores the use 
of IDA, Cheat Engine, and PEiD to test the following skills:

 ■ Detecting the presence of packers

 ■ Unpacking programs with existing tools

 ■ Unpacking programs with advanced debugging

Figure 13.2: Identifying packers with PEiD

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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Takeaways
Off- the- shelf unpackers are available for many packers (don’t reinvent the 
wheel). When unpackers are not available, the unpacked, original program can 
still be manually recovered from memory.

Virtualization

Virtualization provides a form of obfuscation and packing. It translates a program 
into a custom machine language and generates a virtual environment/machine 
(VM) to interpret it. The VM is embedded into the application and runs when 
the application is executed. Note that in this case we’re not talking about typ-
ical large virtual machines such as Windows or Linux running in a hypervi-
sor. Virtualization in this case can quite simply mean a layer of abstraction/ 
interpretation being added between the host (x86) and the code.

For example, consider the following simple “hello world” program:

#include <stdio.h>
int main(void)
{
       printf(“hello, world!\n”); 
       return 0; 
}

This program could then be compiled to an arbitrary machine language. For 
example, this is what it looks like in Brain$#@!:

++++++++[>++++[>++>+++>+++>+<<<<- ]>+>+>- >>+[<]<- ]>>.>- - - 
      .+++++++..+++.>>.<- .<.+++.- - - - - - .- - - - - - - - .>>+.>++.#

The application is then packaged with an interpreter written in the target 
architecture (i.e., x86).

#include <stdio.h>
 
char data[30000];
char program[30000];
int ip=0; /* instruction pointer */
int dp=0; /* data pointer */
 
char read_byte(void) { return getchar(); }
void write_byte(char b) { putchar(b); }
 
int main(void) {
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  int i=0; char b;
 
  do {
    b=read_byte();
    program[i]=b;
    i++;
  } while (b!='#’);
  while (1) {
    b=program[ip];
    if (b==0) {
      break;
    } else if (b=='>') {
      dp++;
    } else if (b=='<') {
      dp- - ;
    } else if (b=='+') {
      data[dp]++;
    } else if (b=='- ') {
      data[dp]- - ;
    } else if (b=='.') {
      write_byte(data[dp]);
    } else if (b==',') {
      data[dp]=read_byte();
    } else if (b=='[') {
      if (!data[dp]) {
        int c=1;
        do {
          ip++;
          if (program[ip]=='[‘) { c++; }
          else if (program[ip]==']’) { c- - ; }
        } while (c);
      }
    } else if (b==']') {
      if (data[dp]) {
        int c=1;
        do {
          ip- - ;
          if (program[ip]=='[‘) { c- - ; }
          else if (program[ip]==']’) { c++; }
        } while (c);
      }
    } else {
      /* do nothing */
    }
    ip++;
  }
  return 0;
}

This adds a layer of abstraction that a cracker or reverse engineer must get 
through. First, reverse engineer the intermediate VM language. For those familiar 
with the programming language Java, Java runs inside of a VM, called the Java 
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virtual machine (JVM). While that was done for portability, not security, it does 
add a layer of complexity. There are other languages that run inside of a VM, 
but you can also create your own (as with the example).

How Code Virtualization Works
Unlike in the simplistic example, a good virtualizer will create a unique, arbitrary 
machine language on the fly, as opposed to using a static or known language. 
This makes it more difficult to develop devirtualization tools.

In this case, the program logic is translated to a custom instruction set. As a 
result, reversing tools are not immediately applicable because they are unable 
to recover/analyze program logic. Then, the VM is compiled to the native 
architecture (i.e., x86).

Reversing the application requires both of these:

 ■ Reversing the VM to decipher the custom instruction set

 ■ Reversing the application logic in the new instruction set

This process is complicated and tedious because your access to debugging is 
limited. You cannot debug the target program logic directly, only the VM. Some 
tools that aid in accomplishing this include Themida and VMProtect.

Layered Virtualization
Virtualization protections can be layered as in the following process:

 ■ Virtual machine VM0 implements the custom instruction set IS0.

 ■ IS0 runs the virtual machine VM1, which implements custom instruction 
set IS1.

 ■ IS1 runs the original application.

An example of layered virtualization may include the following:

1. Compile the C source code to a custom language, such as DazzleZ.

2. Write the DazzleZ interpreter in a custom language such as CatCat.

3. Write the CatCat interpreter in x86.

4. Run the program on the regular x86 platform.

5. Reversing requires backing out all layers of virtualization.

Issues with Virtualization
Virtualization can be an effective tool to slow reversing and cracking. However, 
it does have its downsides, including the following:

 ■ AV detection: Often, malware will use virtualization to conceal itself, so 
many antivirus programs will automatically flag applications using it.
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 ■ File bloat: An application using virtualization needs to have the VM built 
in, which increases file sizes.

 ■ Slowed execution: Virtualized applications need to run both the VM and 
the virtualized code, slowing the application’s execution.

Layering multiple VMs compounds these size and speed issues exponentially.

Is This a Strong Protection?
Evaluating virtualization against the CIA triad has the following results:

 ■ Confidentiality: Yes, the original code is abstracted through layers of 
virtualization.

 ■ Integrity: Yes, modifications to any of the layers will likely cause a ripple 
effect of failures, making it difficult to patch.

 ■ Availability: Each layer added into this setup has an effect on performance. 
Too many layers can dramatically affect speed and availability of code, 
data fetches, etc.

Defeating Virtualization
Virtualization can be an effective defense because defeating it is time- 
consuming and difficult. In general, the following process can be used to 
defeat virtualization:

 ■ Reverse the code- dispatch scheme: VMs typically follow the familiar 
fetch- decode- execute cycle of a CPU, which makes it possible to under-
stand how code is dispatched.

 ■ Reduce complexity: Use pattern matching, symbolic analysis, and similar 
techniques to remove unnecessary complexity.

 ■ “Devirtualize” the program: Attempt to recover a representation of the 
original code. However, this is not always a simple “inverse” for complex 
VMs and may not be possible to recover original code, forcing you to 
reverse engineer the virtualized code.

 ■ Reverse the recovered code: Use traditional tools to reverse the recovered 
code. You may need to rely on static analysis if a functioning program 
cannot be recovered.

Virtualization can be defeated by reverse engineering the virtual machine 
and then transforming the application back into x86 machine code for anal-
ysis. Some tools that aid in accomplishing this include Themida, VMProtect, 
and Tigress.
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Cryptors/Decryptors

Cryptors encrypt the application code sections (a subset of the techniques 
discussed in earlier section on packers), often to avoid malware detection. 
Many anti- malware tools will analyze a piece of software prior to running and 
block software based on API calls to suspicious operating system functions. By 
encrypting the code section, the malware makes it impossible for anti- malware 
programs to inspect the content of the application before execution.

In general, encrypted software must decrypt itself prior to execution. Typically, 
this means the decryption key is somewhere within the software. Therefore, 
reverse engineering should be able to find the key and decrypt the software.

However, there are some exceptions to this. For example, node- locked soft-
ware may derive a key from the specific system on which it resides. Alterna-
tively, malware may beacon to a server to retrieve a decryption key on the fly.

Is This a Useful Protection?
The benefits that cryptors provide include the following:

 ■ Confidentiality: Yes, encryption always adds a layer of confidentiality. 
Only under the right circumstances will it decrypt.

 ■ Integrity: Some, most encryption algorithms add a layer of integrity pro-
tection here because modifying the encrypted data yields corruption 
versus translating to modification of the end code.

 ■ Availability: None; this has no effect.

Defeating Cryptors
Most encryptors have supporting decryptors, which are tools that can automat-
ically restore the original software. Often these decryptors are just the encryptor 
itself with a different input flag

If you are reversing a crypted application, decrypting will get you back to 
the original binary. Since this will be much easier to analyze, see if there is an 
available decryptor before you begin your Reverse Engineering. Some common 
cryptors to check include Yoda’s Cryptor, Morphine, and PGMP.

Summary

In looking at defense options, there is no silver bullet. Most anti- reversing tech-
niques also have downsides.
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Obfuscation incurs performance impact and complicates legitimate debug-
ging. However, at reasonable levels, it can be a good option for slowing down 
RE, especially of decompilable languages.

Anti- debugging has relatively low impact on RE time (many debuggers have 
plugins to circumvent all common anti- debugging tricks) and complicates 
legitimate debugging. However, it may be sufficient to thwart novice crackers. 
Packers again raise the bar in level of difficulty to reverse engineering and pack, 
but, that said, beware of commercial off- the- shelf (COTS) packers, which typi-
cally have corresponding, publicly available unpackers.

Cryptors and decryptors significantly complicate RE. This makes them useful 
for protection of software. However, if not used carefully, they can flag common 
AV as when used maliciously it can also help protect malware.

When considering if/when to use anti- reversing tools, you should weigh 
the trade- offs of potency, resilience, stealth, and cost. Consider your adversary 
and their goals:

 ■ Competing company (IP theft)

 ■ Casual cracker (low- hanging fruit)

 ■ Professional cracker (big/high- value targets)

Also, consider what needs to be defended:

 ■ Key check? Entire program? Most defenses can be applied to specific 
functions.

 ■ Consider that adding defenses can call attention to a target.

A common falsehood is that “everything is hackable and can be reverse 
engineered if someone tries hard enough, so we shouldn’t bother [protecting/
obfuscating/encrypting/etc.] it.” This is a gross misunderstanding of what 
defense is supposed to achieve. Often a cracker may give up hacking, reversing, 
cracking, or breaking a product just because it stopped being fun.

If you can slow down reverse engineers enough, you’ve done your job. Often, 
a solid design with moderate settings of a commercial- off- the- shelf (COTS) 
obfuscator is the best available option. You will need to weigh each approach 
based on project needs.

There is no silver bullet. Don’t let perfect be the enemy of good. Once a rea-
sonable approach is settled on, obfuscators, anti- debugging, packers, etc., can 
be built into your DevOps.
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Application developers use various mechanisms to detect and protect against 
reversing and cracking. However, some of these methods are more effective 
than others. This chapter explores some of the most common techniques, their 
relative strengths and weaknesses, and how they can be defeated.

CRC

A cyclic redundancy check (CRC) is a mathematical calculation performed on 
the bytes of the data to be protected. The result is stored as the CRC, which is 
often appended to the data (i.e., data data data data data data CRC). To 
verify the data, recalculate and compare.

CRC algorithms have their advantages, including the following:

 ■ Fast and compact

 ■ Easy to accelerate with hardware

 ■ Quick to calculate and compare

 ■ Numerous options available (IEEE802.3, CRC- 32, etc.)

In general, CRCs are great for detecting accidental errors or modification, 
such as transmission errors.

Detection and Prevention
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However, they are a poor defense against intentional errors or modifications. 
CRCs can be easily recalculated and updated by an adversary. For example, 
a simplistic CRC might add all of the bytes together and save the result. If a 
corruption were to occur in the file somewhere in the data, then the new sum 
would not match, and action could be taken. If the corruption occurred in the 
CRC portion of the file, then the sum would not match the corrupted CRC, and 
action could be taken. This is great for detecting if a bit got accidentally flipped 
while being downloaded, for example.

But because the CRC is so trivial to recalculate, it’s simple for an attacker to 
make their modifications and simply update the CRC to include their new values.

Is This a Strong Protection?
Comparing CRCs to the CIA triad yields disappointing results:

 ■ Confidentiality: None

 ■ Integrity: Very little (it’s too easy for an attacker to recalculate and put 
the new CRC into the file)

 ■ Availability: None

This defense can easily be defeated by generating a new, valid CRC. Alterna-
tively, you can simply patch out the CRC check. CRCs are powerful for detecting 
accidental corruption but are not useful for intentional corruption.

Code Signing

Many organizations digitally sign their code before releasing it. This is because 
code signing provides two main benefits:

 ■ Authenticity: A digital signature can be generated only with the correct 
private key. This proves that software came from its alleged creator.

 ■ Integrity: Changing digitally signed data invalidates its signature. Code 
signing proves that software hasn’t been modified after release.

Code signing protects against a wide range of potential attacks. However, 
from a cracker’s perspective, the most significant impact is that it can prevent 
patching if a program checks its signature before executing.

How to Code Sign
Code signing works using public key or asymmetric cryptography. These cryp-
tographic algorithms use a pair of public and private keys. To code sign, you 
first need to generate a public/private keypair.
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Digital signatures are validated using your public key; however, you need a 
way to prove that a particular public key belongs to you. This is where public 
key infrastructure (PKI) comes into the picture. Using the generated public key, 
you apply for a certificate from a code signing certificate authority (CA). The 
CA will verify your identity and issue a digital certificate, which contains your 
public key and validates your ownership of this.

With this certificate, you can now generate digital signatures. To do so, you 
would generate a hash of the executable and encrypt that hash with the private 
key. Then, when you distribute the executable, you would bundle the resulting 
signature and your digital certificate with the executable.

While you can go through this process manually, many build tools will do 
this for you. You still would need to buy a certificate and load it into your build 
tool, but then you can ask the build tool to sign the application. If this is your 
first exposure to PKI, know that this is intentionally just scratching the surface 
of it; there are many books dedicated to just this concept.

How to Verify a Signed Application
A code signature is essentially an encrypted hash of the executable. After verifying 
that the public key is valid using the associated certificate, you can decrypt the 
executable’s hash. Then, you independently calculate the hash of the applica-
tion using the same hash function as the application developer. If you compare 
the two hashes and they match, the application is authentic and unmodified. If 
they differ, the application is fake or has been tampered with.

Most operating systems will verify code signatures for you. The OS will also 
generate a warning if the public key used to generate the code signature is 
unverified, as shown in Figure 14.1. However, most people will click Run anyway.

Figure 14.1: Windows warning of unverified program
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Is Code Signing Effective?
Does code signing stop all patching attacks? No.

The reason for this is that there must be a piece of unsigned code that does 
the sign checking. This includes performing a few actions:

1. Calculate the hash of the code.

2. Check if this is what it should be.

 2a. If the answer is correct, run code.

 2b. If the answer is incorrect, don’t run code.

This signature verification code can’t be included in a code signature because 
it needs to contain (or access) the hash value to compare against. It’s impossible 
to predict what this value would be without hashing the application. If you 
hashed the application (which includes this value) and included the hash in the 
application, then the modified application would have a new hash.

Since the signature verification code can’t be signed, there is a different loca-
tion that could be patched to bypass code signing. However, code signing is 
hands down one of the best techniques for securing software integrity against 
both accidental and intentional modifications.

Code Signing vs. CRC
CRCs are commonly used to detect bit errors in data sent over a network. 
However, they provide protection only against accidental changes, not inten-
tional ones. CRCs are easily recalculated by an adversary.

Code signing is as strong as your protection of the private key. Without the 
private key, an attacker cannot regenerate a valid signed hash.

Is This a Strong Protection?
Code signing does a lot better than CRCs when compared to the CIA triad.

 ■ Confidentiality: None

 ■ Integrity: Yes! Fantastic

 ■ Availability: None

A more difficult approach to defeating code signing is to steal the private 
signing keys and use them to digitally sign a modified version of the application.

RASP

Runtime application self- protection (RASP) embeds security into the running 
application. It does so by intercepting system calls and verifying that they are 
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from an expected source. It also intercepts data manipulations and verifies that 
they are coming from authorized sources.

RASP is a reactionary defense. It can be configured to “stop” attacks live. For 
example, RASP can do the following:

 ■ Drop/delete a call it deems malicious, such as a suspicious SQL call into 
an application.

 ■ End a user session.

 ■ Halt execution.

Function Hooking
One technique that RASP uses is function hooking. This involves overwriting 
the first few bytes of a function’s code with a jump to the RASP code.

The RASP code will include checks to verify that the call is legitimate. This 
can include the following:

 ■ Checking the parameters and context of the call

 ■ Checking the code has not been modified (might compare a hash of the 
function with a known good hash)

At the end of the RASP code, it will then execute the overwritten code before 
jumping back to the original function.

Risks of RASP
If RASP detects an attack, it can stop execution. However, this may not be accept-
able depending on the use case of your software. For example, in hospitals, 
manufacturing, critical infrastructure, automobiles, and similar environments, 
an application suddenly halting can pose a significant risk to health and safety.

RASP can also have its downsides even in the absence of an attack. Some 
effects include the following:

 ■ Speed: Because of the function hooking, RASP has a nontrivial effect 
on speed.

 ■ Size: Function hooking and lookup tables help to assure security; how-
ever, they also bloat binaries.

Is This a Strong Protection?
RASP provides mixed results when compared against the CIA benchmark:

 ■ Confidentiality: No

 ■ Integrity: Yes (for the sections that RASP is protecting, the context checking 
at runtime is a very powerful check)

 ■ Availability: No (in fact can be negative)
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If RASP is correctly configured, it can be difficult to defeat. You can’t easily 
patch the application if code signing is enabled, and you can’t easily reverse 
the application if anti- debugging is enabled.

However, RASP does open a potential avenue for an attack against availability. 
If you can identify an input that it perceives as an “attack,” you can potentially 
make it shut itself down.

Allowlisting

Allowlisting, sometimes called whitelisting, is providing the execution envi-
ronment with a list of “good” things. For example, a computer may allow only 
allowlisted applications to run.

There are numerous commercial products that provide allowlists. For example, 
the Windows operating system has built- in software restriction policies.

From a cracking perspective, allowlisting can prevent the use of cracking 
and reverse engineering tools. For example, tools such as Procmon, debuggers, 
Cheat Engine, ResourceHacker, Dependency Walker, and other reversing and 
cracking applications are unlikely to be included in the allowlist.

Allowlisting is difficult to get right. It can be difficult to know all of the var-
ious libraries that your application needs. When generating a whitelist, a great 
deal of testing must be performed to ensure that all required applications and 
libraries are included on the allowlist.

How Allowlisting Works
There are two main approaches to allowlisting. A list can be based on a pro-
cess’s name or on its hash. These lists are applied only when an application is 
first launched.

Breaking Name- Based Allowlists

Allowlists keep track of the names of processes or applications allowed to exe-
cute. To bypass this type of list, name your malicious application a whitelist- 
approved name. For example, you determine that solitare.exe is allowlisted, 
so you name your malicious app solitare.exe.

Breaking Name and Hash- Based Allowlists

If an allowlist uses both application names and hashes, it can’t be bypassed by 
renaming an application. The hash of the malicious app wouldn’t match that 
of the legitimate one.
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However, these allowlists can be defeated through process injection. Once an 
allowlisted application is running, if you can get code execution, you can inject 
malicious libraries. And while that’s easily said, getting code execution is not 
often trivial. So, this is one of those cases where it sounds easy because it can 
be said in a sentence, but in reality having a prerequisite of code execution in 
a whitelisted process may be a full roadblock for a cracker.

If you have gotten the elusive code execution in an allowlisted applica-
tion, there are numerous techniques for loading into the process. In Windows, 
you can use LoadLibrary() or SetWindowsHookEx(). In Linux, you can use 
ptrace()/PTRACE_POKEDATA/opcodes for uselib() syscall.

An application’s hash is checked prior to application launch. Modifications 
to the application after it is launched won’t be detected by the allowlist.

Example: Metasploit

Metasploit is a popular hacking tool. Its main goal is to exploit an application 
and inject a meterpreter, which provides the attacker with remote access to the 
infected computer. (See the “Tools” section of our repository for links.)

With Metasploit, no new applications are started; a meterpreter injects into the 
hacked process. From there it can “pivot” into any other running application.

Is This a Strong Protection?
Allowlisting provides limited protection:

 ■ Confidentiality: No

 ■ Integrity: Yes (if paired with the name and hash; however, the integrity 
checking is generally done only at application start time)

 ■ Availability: No

Allowlisting can be defeated in a couple of ways. A malicious program can 
impersonate a legitimate application to defeat a name- based whitelist or use 
code injection to defeat an allowlist that uses both names and hashes.

Blocklisting

Blocklisting, sometimes referred to as blacklisting, is the exact opposite of allow-
listing. Instead of specifying everything that is permitted, it is a list of all the 
things that are not allowed. The blocklist can be based on names, keys, or hashes.

Blocklists are easy to make but difficult to maintain. For example, consider 
a blocklist including the malicious executable virus1.exe. What happens next 
week when virus2.exe comes out?
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From a more cracking perspective, you might blocklist keys that you know 
to be bad (i.e., cracked). Depending how your key generation works, it may be 
possible to blocklist whole subsets of keys.

Alternatively, a program can also refuse to run if certain other applications 
are seen. For example, the application may not run if a debugger is installed.

Many antiviruses use this approach to identify and block known malware. 
They include a list of “signatures” of known bad applications. If something 
matches the signature, it’s flagged as bad.

Is This a Strong Protection?
A blocklist provides less protection than a whitelist:

 ■ Confidentiality: None

 ■ Integrity: Some (if paired with hashes or keys)

 ■ Availability: None

The means of defeating a blocklist depend on the information that it uses to 
identify malicious applications. If it is name- based, change the name. If it stores 
the hashes of known- bad programs, mutate it by making a small change to the 
application’s code or data to change its hash.

Remote Authentication

For most anti- reversing and anti- cracking strategies, the attacker has all of the 
pieces that they need to overcome the defense. With enough time, they can 
reverse engineer and/or patch the application.

Remote authentication requires the application to retrieve something remotely 
in order to work. For example, it might get a key from a remote server that it 
uses to decrypt some crucial code.

Most attackers will reverse engineer a system “offline.” They don’t want 
it reaching out to your servers because they don’t want you to have their IP 
address or to know that they are running your software. Keep in mind when 
attempting to crack a piece of software, you’re likely launching and running the 
startup and checking code frequently. Whereas a legitimate user would likely 
launch the application at max a few times a day. That type of behavior is really 
easy to spot on a remote authentication server. A user who is authenticating 
100 times a day is likely doing something nefarious.

Architecting the application in such a way that it can’t run without information 
from a server helps prevent reverse engineering. The attacker will either need 
to reverse it “online” or give up.
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Remote Authentication Example
One possible approach to implement remote authentication is to encrypt every 
part of the application except for the loaders. The loader sends system information, 
a hash of the software, and the activation key to the server.

The server will verify the expected hash and the activation key. If they vali-
date, it uses an algorithm to produce a decryption key, which it will send back to 
the application. The loader can then decrypt the application, enabling it to run.

An attacker will not be able to “mimic” your remote server and algorithm 
without access to the server- side code. The only way to research the software 
will be to activate it online. The application can have decryption code be resident 
in memory only. This way, each startup requires server interaction.

The main challenge of this approach is that implementing cryptography 
and enterprise key management solutions is not trivial. A mistake may allow 
a cracker to bypass the validation code and generate their own decryption 
keys. As discussed with packed applications, once it’s unpacked in memory, 
you could take a memory dump of it for future static analysis. However, that 
memory dump can’t easily (or sometimes not at all) be turned into a decrypted 
application capable of running. The memory dump won’t be useful for patching 
or testing modifications but never discount the value of static analysis.

Is This a Strong Protection?
Remote authentication provides mixed reviews when compared against the 
CIA triad:

 ■ Confidentiality: Some (the application will eventually be decrypted in 
memory, but the binary at rest is restricted)

 ■ Integrity: Yes (the server should be doing some type of integrity checking 
prior to releasing the response)

 ■ Availability: Possibly negative

One possible attack against a remote server is to set up a fake server. To start, 
activate the application online and capture all communication between the 
application and server.

Then, stand up a fake server with appropriate responses. The application’s 
code will be decrypted and can be saved to disk.

This approach does require a single online application to get the decrypted 
code. However, this allows a full, decrypted binary to be created, making further 
online authentication unnecessary. But note that this approach can’t always work 
if the application does good due diligence in requiring certain certificates from 
the server or if the challenge/response from the server is not always the same 
(i.e., changes with time or date).
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Lab: ProcMon

This lab shows that there is more than one possible way to crack a program. 
Head back to the book’s GitHub page (https://github.com/DazzleCatDuo/ 
X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES) and 
locate the ProcMon lab.Skills.

This lab uses ProcMon and IDA to understand opportunities for alternative 
cracking solutions. Some key skills being tested include the following:

 ■ Analyzing program behavior dynamically

 ■ Identifying indirect approaches to circumventing software defenses

Takeaways
Watching what a process does from the outside can be quicker/easier than 
watching it from the inside (that is, debugging is not always the best approach).

There are usually many ways to crack a program; finding the best takes practice.

Summary

This chapter presented various methods of protecting against software cracking 
and reversing. Some techniques are generally ineffective, while others can work 
but also have some downsides.

It’s important to remember that almost any defense can be defeated given 
enough time and effort. The goal is to slow an attacker down and, ideally, make 
them frustrated enough to give up.

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
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In an “Introducton” the legal implications and considerations of reverse engi-
neering and cracking were explored at a high level. This section provides a more 
in-depth discussion of relevant U.S. laws and their impacts and interpretations.

 WA R N I N G   As a disclaimer, we are not lawyers, and this is not legal advice. If 
you need legal advice, please contact any reputable lawyer or the Electronic Frontier 
Foundation at www.eff.org, which has deep specialization in the security space.

U.S. Laws Affecting Reverse Engineering

Laws regarding copyrights, hacking, etc., vary based on jurisdiction. This section 
covers some applicable laws in the United States. If you are located elsewhere, 
check your local laws and restrictions.

The Digital Millennium Copyright Act
Digital rights management (DRM) is a solution designed to protect intellectual 
property. DRM solutions can track and control protected content after it reaches 
the marketplace.

The Digital Millennium Copyright Act (DMCA) was passed by Congress in 
1998. It brought the United States into compliance with international copyright 
agreements.

Legal

http://www.eff.org
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Computer Fraud and Abuse Act
The Computer Fraud and Abuse Act (CFAA) was enacted in 1984. It is a fed-
eral anti-hacking statute that prohibits unauthorized access to computers and 
networks.

Lawmakers wrote the law so poorly that creative prosecutors have been abus-
ing it ever since. However, in recent years, efforts have been made to protect 
security researchers from being prosecuted under it. Wired.com said this about 
the CFAA in a 2014 article:

A high profile case involving misuse of the statute occurred in 2008 when three 
MIT students were barred from giving a presentation at the Def Con hacker 
conference. The students had found flaws in the electronic ticketing system used by 
the Massachusetts Bay Transportation Authority that would have allowed anyone 
to obtain free rides. The MBTA sought and obtained a temporary restraining order 
to bar the students from speaking about the flaws. In granting the temporary 
gag order, the judge invoked the CFAA, saying that information the students 
planned to present would provide others with the means to hack the system. The 
judge’s words implied that simply talking about hacking was the same as actual 
hacking. The ruling was publicly criticized, however, as an unconstitutional 
prior restraint of speech, and when the MBTA subsequently sought a court order 
to make the restraining order permanent, another judge rejected the request, 
ruling in part that the CFAA does not apply to speech and therefore had no  
relevance to the case.

www.wired.com/2014/11/ 

hacker- lexicon- computer- fraud- abuse- act

A second high-profile, and very sad, abuse of the CFAA resulted in a high-profile 
suicide. This came after a U.S. attorney used CFAA to launch a heavy-handed 
prosecution against Internet activist Aaron Swartz for what many considered 
a minor infraction. Swartz, who helped develop the RSS standard and was 
a cofounder of the advocacy group Demand Progress, was indicted after he 
gained entry to a closet at MIT and allegedly connected a laptop to the univer-
sity’s network to download millions of academic papers that were distributed 
by the JSTOR subscription service. Swartz was accused of repeatedly spoofing 
the MAC address of his computer to bypass a block MIT had placed on the 
address he used.

Although JSTOR did not pursue a complaint, the Justice Department pushed 
forward with prosecuting Swartz. U.S. Attorney Carmen Ortiz insisted that 
“stealing is stealing” and that authorities were just upholding the law. Swartz, 
in despair over his pending trial and the prospect of a felony conviction, com-
mitted suicide in 2013. In response to the tragedy, two lawmakers proposed a 
long-overdue amendment to the law that would help prevent prosecutors from 

http://wired.com
https://www.wired.com/2014/11/hacker-lexicon-computer-fraud-abuse-act
https://www.wired.com/2014/11/hacker-lexicon-computer-fraud-abuse-act
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overreaching in their use of it. The amendment, referred to as Aaron’s law, was 
introduced months after Swartz’s death by Rep. Zoe Lofgren (D-Calif.) and 
Sen. Ron Wyden (D-Oregon). The amendment would exclude breaches of terms 
of service and user agreements from the law and also narrow the definition 
of unauthorized access to make a clear distinction between criminal hacking 
activity and simple acts that exceed authorized access on a minor level. Instead, 
the amendment proposes to define unauthorized access as “circumventing 
one or more technological measures that exclude or prevent unauthorized 
individuals from obtaining or altering” information on a protected computer. 
The amendment also would make it clear that the act of circumvention would 
not include a user simply changing his MAC or IP address to gain access to 
a system.

Copyright Act
Under the Copyright Act of 1976, a copyright for a computer program comes 
into being as the source code for the computer program is being written by the 
programmer. The program does not need to be complete or even functional for 
copyright protection to come into being. Copyright case law treats the copyright 
of the source code and object code as equivalent.

If you are not the copyright owner, it is typically not legal to perform any of 
the following actions without permission:

 ■ Copying a program, or parts of programs, to give or sell to someone else

 ■ Preloading a program onto the hard disk of a computer being sold

 ■ Distributing a program over the Internet

 ■ Circumventing controls that prevent access to copyrighted material

However, there are many exceptions and nuances to this. The first copyright for 
software was in 1964. The justification for why to begin granting protection of 
software was they now viewed a computer program like a “how-to book.” The 
Copyright Act of 1976 officially calls out software as copyrightable.

So, when a piece of software gets copyright protection, what exactly is copy-
righted? The copyright protects the expression of an idea, not the idea itself. 
For example, if you develop the concept of a lemonade stand game, you can 
copyright your implementation of it but not the idea of a lemonade stand game. 
Second, the protection protects the object (executable) program, not the source 
code. Lastly, it protects the screen displays produced by the program while it 
executes.

The source code of software is generally kept as a trade secret and not released 
under a copyright to the public.
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Important Court Cases
In addition to laws, court precedent is important to determining what is and isn’t 
legal in the United States. A couple of important court cases include the following:

 ■ Apple Computer v. Franklin Computer: Established that object programs 
are copyrightable.

 ■ In the early 1980s Franklin Computer corporation started to produce 
the Franklin Ace computer to compete with the Apple II. The Franklin 
ACE was compatible with Apple 2 programs. To do that, the Franklin 
Ace had copied some of the operating system functions directly from 
the ROM on an Apple II. Apple sued Franklin Computers for copyright 
infringement because they copied their object code. Apple won.

 ■ Sega v. Accolate: Established that disassembling object code to determine 
technical specifications is fair use.

 ■ A video game maker, Accolate, wanted to make some of its games for 
the Sega Genesis. However, Sega didn’t share the technical specs for 
the system, so Accolade disassembled the object code of a Sega game 
to determine how it worked. Sega sued Accolade for infringing on 
their copyright. However, this time the court ruled in favor of Accolade, 
because Accolade’s actions constituted fair use of the software.

What was gained from these two court cases was that reverse engineering was 
OK as long as you didn’t infringe on the copyright. Recall Franklin Computer 
infringed on the copyright by copying some of Apple’s code. Where Accolate 
did not infringe the copyright, they didn’t copy any copywritten material; they 
just learned from it.

One way to make sure you fall in the OK use like Accolate and not in the 
copying situation like Franklin Computers is to use something known as a clean 
room software strategy. This consists of having two teams that are separated; each 
do different parts of the work. The first would research the competitor system 
or program and write technical specifications of how it performs. The second 
team would use that specification to develop the new system.

If Franklin Computer had taken this approach, it would have had some team 
members figure out how the Apple system worked and describe the function-
ality. Then, if a second team implemented it themselves, never having seen the 
Apple implementation, it potentially could have changed the outcome of the 
event. If they had approached the situation this way they likely would have 
been fine from lawsuits because they would not have used any of Apple’s code.

The key is to avoid the unconscious copying of code. If the team that researched 
the Apple II had also been the team to implement the specification, they would 
likely have suffered from a predisposition to use code like that in Apple’s system 
because that’s what they had seen already.
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Fair Use
Sometimes it is legal to reproduce a copyrighted work without permission. In 
general, courts consider four factors when evaluating whether something falls 
under the fair use exceptions:

 ■ Purpose and how it’s used: If the purpose is criticism, commentary, news 
reporting, teaching, or research, then it is likely permissible. However, 
commercial use likely isn’t.

How about for character of use? The most important consideration is 
how much the work has been transformed from the original. If the new 
author has added new expressions or meaning, then it’s potentially a 
candidate for fair use.

 ■ Nature of work: Fair use is granted more favorably to works of nonfiction 
than of works of fiction.

 ■ Amount of work being copied: A brief excerpt is more likely to be OK 
than copying an entire book or an entire chapter.

 ■ Effect on market for copyrighted work: For example, copying out-of-print 
material doesn’t have the same material effect as copying a newly written 
and printed work.

According to the Copyright Act, 17 U.S.C. § 107, reverse engineering falls 
under “fair use” when done for “. . .purposes such as criticism, comment, news 
reporting, teaching (including multiple copies for classroom use), scholarship, 
or research. . . .” However, this is weighed against “the effect of the use upon 
the potential market for or value of the copyrighted work.”

DMCA Research Exception
In October 2016, DMCA added a good-faith security research exception to the 
law. It states that “accessing a computer program solely for purposes of good-
faith testing, . . .where such activity is carried out in a controlled environment 
designed to avoid any harm to individuals or the public, . . .and is not used or 
maintained in a manner that facilitates copyright infringement.”

This also can apply to reverse engineering and cracking. It states “. . .researchers 
can circumvent digital access controls, reverse engineer, access, copy, and manipu-
late digital content which is protected by copyright without fear of prosecution— 
within reason.”

This is not a get-out-of-jail-free card or a blank permission to go hack and 
crack everything. This represents an evolution in the industry to recognize that 
security research done for the right reasons is a good thing and that the law will 
now protect those who are doing good faith research.
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Legality
Copyright law in relation to reverse engineering and code modification heavily 
emphasizes intent and effects. When proceeding on your own, consult with a 
lawyer. . .or keep it to yourself. This isn’t meant in a sneaky way, but recall that 
a part of fair use is the effect your work has on the market. If you’re tinkering 
and cracking for education or for research and your outcomes stay with you, 
they don’t really affect the potential market for the work. That’s a key factor in 
fair use. The second you use your knowledge to make a keygen that you put 
online that causes a vendor to lose money, then it’s no longer considered fair 
use. But if you’re keeping it all to yourself in a way that doesn’t affect the market 
or others, then you’ve gone a long way to fall under fair use.

 WA R N I N G   To repeat, we are not lawyers, this is not legal advice, and this is our 
interpretation and understanding of the regulatory landscape in the United States that 
affects reverse engineering.

Summary

This chapter covered some of the legal considerations of reverse engineering 
and cracking, but we are not lawyers. For legal advice, we recommend contact-
ing the EFF.
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Up to this point, this book has covered the core tools and skills used for reverse 
engineering and cracking. However, this is an evolving field, and new methods 
are being developed to make it faster and easier. This section describes at a high 
level some advanced techniques and tools on the cutting edge of reverse engi-
neering. Our goal with this chapter is that if at this point you’re still loving software 
cracking and looking to take it even further to the next level, we want to present 
you with a plethora of rabbit holes to go down. Depending on what interests 
you, we hope the following will point you in the right directions to go deeper.

Timeless Debugging

Timeless debugging is also known as reverse debugging. The core idea is: “what 
if we could go backwards when debugging?”

Consider the case where something went wrong while debugging. Maybe 
a patch failed, you missed an anti-debug check, you don’t know how you got 
here, etc.

There are a few different tools designed for timeless debugging, including 
the following:

 ■ Visual Studio Ultimate (.NET)

 ■ rr

 ■ gdb

Advanced Techniques
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To get started, check out George Hotz @ Enigma in his 2016 USENIX Enigma 
talk at www.youtube.com/watch?v=eGl6kpSajag.

Binary Instrumentation
Binary instrumentation is when you inject code to watch or modify a process 
as it executes. This can be useful for finding memory leaks, tracing key checks, 
performing anti-anti-debugging, etc.

Some tools for binary instrumentation include the following:

 ■ PIN

 ■ DynamoRIO

 ■ Frida

 ■ Valgrind

 ■ QBDI

For an introduction to binary instrumentation, check out the 2015 Blackhat 
USA talk “Augmenting Static Analysis Using Pintool: Ablation” at www.youtube 
.com/watch?v=wHIlNRK_HiQ.

Intermediate Representations
Normally, for reversing and cracking, it’s necessary to learn and write tools for 
each new architecture. The idea of intermediate representations is to translate 
all assembly code for all architectures to the same language. That way, you can 
learn and write tools for just that language.

There are a few different tools that can be used to work with intermediate 
representations, including the following:

 ■ Binary Ninja

 ■ REIL

 ■ VEX

 ■ BNIL

 ■ Ghidra PCode

 ■ IDA microcode

 ■ LLVM IR

To get started with intermediate representations, check out “Finding Bugs 
with Binary Ninja” by Jordan Wiens from LevelUp 0x03 at www.youtube.com/ 
watch?v=55gClG- sjWc.

https://www.youtube.com/watch?v=eGl6kpSajag
https://www.youtube.com/watch?v=wHIlNRK_HiQ
https://www.youtube.com/watch?v=wHIlNRK_HiQ
https://www.youtube.com/watch?v=55gClG-sjWc
https://www.youtube.com/watch?v=55gClG-sjWc
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Decompiling
The idea of decompiling is to recover original source code from advanced 
automated analysis of assembly code. Some tools that offer decompilation 
include the following:

 ■ IDA’s Hex-Rays

 ■ Ghidra

 ■ Binary Ninja

 ■ Snowman Decompiler

To learn more about decompiling, check out “Decompiling a Virus using IDA 
Pro” at www.youtube.com/watch?v=gYkDcUO9otQ.

Automatic Structure Recovery
Automatic structure recovery involves automatically finding patterns and links 
in memory to make inferences about the data types used. Some tools for this 
include the following:

 ■ dynStruct

 ■ Cheat Engine

To learn more about automatic structure recovery, check out the dynStruct 
idea and paper at https://github.com/ampotos/dynStruct.

Visualization
Code listings and text can be difficult to think and reason about. Visualization 
can be used to deepen your understanding of file structure and execution.

Some reversing tools that offer useful visualizations include the following:

 ■ BinWalk

 ■ Hopper

 ■ IDA plugins

 ■ Veles

 ■ ..cantor.dust..

 ■ Cheat Engine

A good starting point for understanding how visualization can be used for 
reversing includes the Derbycon talk “Dynamic Binary Visualization” from 
Christopher Domas at www.youtube.com/watch?v=4bM3Gut1hIk.

https://www.youtube.com/watch?v=gYkDcUO9otQ
https://github.com/ampotos/dynStruct
https://www.youtube.com/watch?v=4bM3Gut1hIk
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Deobfuscation
Obfuscation is designed to slow down reversing in an attempt to get a cracker 
to give up. The idea is to use tools to automatically remove obfuscations from 
programs using tools like Tigress Protection.

Check out “Lets break modern binary code obfuscation” at www.youtube 
.com/watch?v=TDnAkm6ZTYw.

Theorem Provers
Theorem provers use mathematics to analyze code, including reduction, deob-
fuscation, boundaries, inputs, etc. Some theorem proving tools for reversing 
include the following:

 ■ Z3

 ■ STP

 ■ Boolector

 ■ Yices

To see how theorem provers can be used, watch “Using z3 to find a password 
and reverse obfuscated JavaScript” at www.youtube.com/watch?v=TpdDq56KH1I.

Also check out the yearly SMT-COMP!, which has some really interesting 
benchmarks on many unique solvers at https://smt- comp.github.io/2023.

Symbolic Analysis
The idea behind symbolic analysis is trying to find inputs that cause interesting 
results. For example, what inputs could cause a crash, pass a key check, unlock 
a secret, etc.

Symbolic analysis tools will trace user input through a program. At each 
branch, they ask a theorem prover which user input would go down the taken 
path. What user input would go down the not-taken path?

For example, consider the following code:

if (strlen(username) > 10)
       if (key_1^sum(username)==key_2)
              printf("key passed");

A symbolic analysis tool will automatically identify the combination of  
username, key_1, and key_2 that will pass the checks and reach the “key passed” 
print statement.

https://www.youtube.com/watch?v=TDnAkm6ZTYw
https://www.youtube.com/watch?v=TDnAkm6ZTYw
https://www.youtube.com/watch?v=TpdDq56KH1I
https://smt-comp.github.io/2023


 Chapter 16 ■ Advanced Techniques 249

Some symbolic analysis tools include the following:

 ■ Angr

 ■ Mayhem

 ■ KLEE

 ■ Triton

 ■ S2E

To see an example of symbolic analysis with Angr, check out the DEF CON 
23 talk by Shoshitaishvili and Wang, “Angry Hacking: The next gen of binary 
analysis,” at www.youtube.com/watch?v=oznsT- ptAbk.

Summary

At this point, the best way to improve your reversing and cracking skills is 
via more hands-on practice. On the Windows VM, the allthethings folder on 
the Desktop contains a variety of different crackmes to practice with sorted by 
difficulty level.

https://www.youtube.com/watch?v=oznsT-ptAbk
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This last chapter of this book introduces software reversing and cracking. It is 
primarily focused on understanding how a program works and bypassing or 
modifying undesirable functionality (like key checkers).

This chapter takes this knowledge and applies it to real-world hacking. Stack 
smashing and shellcoding both use an understanding of how a program and 
the stack works to run malicious code within a program.

Stack Smashing

Stack smashing, also known as stack-based buffer overflows, is one of the most classic 
attacks against software. It takes advantage of the fact that non-memory-safe 
languages such as C/C++ have no built-in protection that prevents an applica-
tion from accessing or overwriting data in other parts of memory. For example, 
C/C++ doesn’t automatically check that the data written to an array fits within 
the bounds of that array. If you don’t know C, don’t worry. As long as you know 
any programming language, you should be able to follow along.

Because stack smashing has been around for such a long time, there are 
numerous compilers that have built-in automatic guards that are put into com-
piled code to prevent this. While it’s not as easy of an attack as it used to be, 
everyone should fully understand how the attack works, because:

Bonus Topics
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 ■ Some facets of it still work.

 ■ It’s the foundation of other types of attacks.

 ■ Not every application has stack protections.

For any of the following C code examples, if you build them with gcc, 
you must use the flag -fno-stack-protector to turn off these protections. 
Making the full command line for using gcc to build in Linux: gcc myfile 
.c-fno-stack-protector.

For example, consider the following simple C program:

void function(int a, int b, int c) {
   char buffer1[5];
   char buffer2[10];
}
 
void main() {
  function(1,2,3);
}

After this application has been compiled and the object has been dumped 
from memory, it results in the following assembly code:

function:
      push ebp
      mov esp, ebp
      sub ebp, 20  (*stack shown here)
      leave
      ret
main:
      push ebp
      mov ebp, esp
      push 3
      push 2
      push 1
      call function
      add esp 0xc
      leave
      ret

After executing the first three instructions under function, including  
sub ebp, 20, the stack will look like the following table with addresses increasing 
from the top of the table going down:

NAME SIZE

buffer2 10

buffer1 5

ebp 4
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NAME SIZE

ret 4

a 4

b 4

c 4

ebp 4

Now, consider the following example code:

void function(char *str) {
   char buffer[16];
 
   strcpy(buffer,str); //Copies incoming str to buffer 
}
 
void main() {
  char large_string[256];
  int i;
 
  for( i = 0; i < 255; i++)
    large_string[i] = 'A’;  //creates a string of 255 ‘A’s
 
  function(large_string);
}

In this code, the main function builds a string that consists of 255 As. It then 
passes a pointer to that buffer to function, and function allocates 16 bytes for 
a local buffer but then copies (using strcpy) the input buffer blindly with no 
length checks. This means the input buffer that was 255 As will overflow the 
local buffer that was allocated only 16 bytes.

If you run the code, the result will be Segmentation fault (core dumped).  
A segmentation fault occurs when an application attempts to read, write, or exe-
cute an invalid memory address. Let’s dig deeper to figure out what happened.

After assembly, the code is transformed into the following assembly code:

0804840c <function>:
 804840c:    55                       push   ebp
 804840d:    89 e5                    mov    ebp,esp
 804840f:    83 ec 28                 sub    esp,0x28
 8048412:    8b 45 08                 mov    eax,DWORD PTR [ebp+0x8]
 8048415:    89 44 24 04              mov    DWORD PTR [esp+0x4],eax
 8048419:    8d 45 e8                 lea    eax,[ebp- 0x18]  ;[1]
 804841c:    89 04 24                 mov    DWORD PTR [esp],eax
 804841f:    e8 cc fe ff ff           call   80482f0 <strcpy@plt>
 8048424:    c9                       leave  
 8048425:    c3                       ret  
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Looking at this, you can see that ebp-0x18 is the address at the start of the 
buffer (marked as [1] in the previous code). Looking at the function preamble, 
with the stack setup, you can see that 0x28 bytes were allocated for the stack. 
Recall that ebp points to the bottom of the stack and esp the top. Therefore,  
ebp = esp+0x28.

So, at the time of function setup, the start of the array, in terms relative to esp, 
starts at esp+0x10. While this seems complicated, all it means is that the buffer 
is 0x10 bytes away from the end of the function’s allocated stack, which makes 
sense. Recall that 0x10 is 16 in base 10, and the function is allocated 16 bytes.

To see the effects of the stack smashing in action, run the application in gdb and 
set a breakpoint right before the strcpy operation. At the breakpoint, printing 
memory at the stack pointer should show something similar to Figure 17.1.

In this image, the allocated buffer takes up the row indicated by address 
0xffffd130, and 0x10 bytes after that is the end of the function’s stack frame. 
That is then followed by the saved value of the previous stacks ebp, and lastly 
the return address. The value of the saved ebp (previous functions stack frame) 
register is 0xffffd278, and the return address is 0x08048470.

After stepping over the strcpy operation, the same region of memory will 
look like Figure 17.2. The strcpy operation overwrites the buffer, the saved ebp 
register, and the return address with 0x41 (A).

When the application reaches the ret operation, it will pop the return address 
off of the stack and attempt to continue execution at that location. However, 
since 0x41414141 is an invalid address, the CPU segfaults.

This example causes the application to crash, but this is not the only possible 
effect. At a high level, what you have the ability to do is control the return address 
and the stack frame of the previous function. While stack frame manipulation 
has its uses, it’s a lot more common to go after the return address manipula-
tion, so we’ll focus on that. In the first case, the return address was overwritten 
with junk, but what if we were more tactical about what we overwrite with 

Figure 17.1: Function stack frame before strcpy

Figure 17.2: Function stack after strcpy
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the return address? The following code sample is designed to alter the return 
address to control code execution. The goal is to skip over the x=1 instruction 
in the following code:

#include <stdio.h>
void function(int a, int b, int c) {
//do something so we skip x=1 after a return
} 
void main() {
     int x;
     x = 0;
     function(1,2,3);
     x = 1;
     printf("%d\n",x);
 }

In this code, the main function sets up a local variable x and gives it an initial 
value of 0. It then calls function with some fixed values. Inside of function, 
there is no code yet. The next step is to figure out what code is needed there to 
achieve the goal of rewriting the return address.

After returning from function, the main function updates the value of x to be 
1 and then proceeds to print the value of x. Can we use our knowledge of cdecl 
and the stack setup to make it so the code never runs x=1 and instead prints 
x=0? Yes! The challenge is to write the contents of function in such a way that 
the x=1 instruction inside of the main function is skipped.

For this code, the stack inside of Function would look like the following:

NAME ADDR

ebp ebp

return address ebp+4

a ebp+8

b ebp+12

c ebp+16

This is your run-of-the-mill standard cdecl stack setup. You know you’re 
going to want a buffer since this chapter is all about buffer overflows, so add 
a buffer to function. You’re also going to want a way to manipulate certain 
values in the buffer, so add a pointer. You could also use syntax like buffer[z], 
but the pointer helps to more explicitly state memory offsets, which is helpful 
for learning.

#include <stdio.h>
void function(int a, int b, int c) {
char buffer[16];
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int *r;
r = 0x99;  //this is here so r is not optimized out
buffer[0] = 0x88; //this is here so buffer is not optimized out
} 
void main() {
     int x;
     x = 0;
     function(1,2,3);
     x = 1;
     printf("%d\n",x);
 }

When assembled, this translates to the following assembly code:

0804840c <function>:
 804840c:    55                       push   ebp
 804840d:    89 e5                    mov    ebp,esp
 804840f:    83 ec 20                 sub    esp,0x20
 8048412:    c7 45 fc 99 00 00 00     mov    DWORD PTR [ebp- 0x4],0x99
 8048419:    c6 45 ec 88              mov    BYTE PTR [ebp- 0x14],0x88
 804841d:    c9                       leave  
 804841e:    c3                       ret

Now there are new things on the stack, the pointer and the buffer.

NAME ADDR

buffer ebp-0x14

r ebp-4

ebp ebp

return address ebp+4

a ebp+8

b ebp+12

c ebp+16

In this stack frame, the return address is at buffer+0x18. The next step is to 
update function’s code to have the pointer point to this address in memory.

For those not familiar with C, & is “address of,” so the following code sets 
ret to point to the address in memory where buffer+0x18 is. By drawing out 
the stack, you can see that this is the saved return address. At this point, the 
return address hasn’t been changed, but we have a pointer to it. The next step 
is to figure out what to change it to, to skip x=1.

#include <stdio.h>
void function(int a, int b, int c) {
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       char buffer[16];
       int *ret;
 
       //now we have the return value, what do we do with it?
       ret = (unsigned int)&buffer+0x18;
       buffer[0] = 0x88; //this is here so buffer is not optimized out
} 
void main() {
     int x;
     x = 0;
     function(1,2,3);
     x = 1;
     printf("%d\n",x);
 }

To figure out how to manipulate the return address, take a look at the assem-
bled code for main:

0804841f <main>:
 804841f:    55                       push   ebp
 8048420:    89 e5                    mov    ebp,esp
 8048422:    83 e4 f0                 and    esp,0xfffffff0
 8048425:    83 ec 20                 sub    esp,0x20
 8048428:    c7 44 24 1c 00 00 00     mov    DWORD PTR [esp+0x1c],0x0
 8048430:    c7 44 24 08 03 00 00     mov    DWORD PTR [esp+0x8],0x3
 8048438:    c7 44 24 04 02 00 00     mov    DWORD PTR [esp+0x4],0x2
 8048440:    c7 04 24 01 00 00 00     mov    DWORD PTR [esp],0x1
 8048447:    e8 c0 ff ff ff           call   804840c <function>
 804844c:    c7 44 24 1c 01 00 00     mov    DWORD PTR [esp+0x1c],0x1;x=1
 8048454:    8b 44 24 1c              mov    eax,DWORD PTR [esp+0x1c]
 8048458:    89 44 24 04              mov    DWORD PTR [esp+0x4],eax
 804845c:    c7 04 24 08 85 04 08     mov    DWORD PTR [esp],0x8048508
 8048463:    e8 88 fe ff ff           call   80482f0 <printf@plt>
 8048468:    c9                       leave  
 8048469:    c3                       ret

Normally, the return address of the function would be 0x804844C, and, looking 
at that instruction, that is the x=1 that we want to avoid! After this line, the next 
instruction starts at 0x8048454.

Now, there are two options for changing the return address. One is to use 
the pointer to the return address to change it to be the hard-coded 0x8048454. 
The problem with this approach is that the address is a virtual address chosen 
at build time by the compiler, and every time you launch it, it will be the same, 
until you recompile. When you recompile, there is a chance you will get new 
virtual addresses. You’d need to recompile to test this theory, so this approach 
is a bit rigid.
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Instead, the better approach is to note that the x=1 instruction is 8 bytes long. 
That will always be consistent, so the stronger approach is to add 8 bytes to the 
current return address.

 N OT E   When printing out assembly, gdb will often cut off the hex display, so if 
you’re looking at the printout, you’ll count only 7 bytes on the x=1 line. That is simply 
because it was cut off. Always do the math with the addresses to make sure you have 
the right byte count.

To skip the x=1 instruction, the return address should be updated by adding 
8 bytes. Adding that into the code produces the following:

#include <stdio.h>
void function(int a, int b, int c) {
char buffer[16];
int *ret;
 
ret = (unsigned int)buffer+0x18; //get the return value
*ret +=0x8; //increment the return value by 8
buffer[0] = 0x88; //this is here so buffer is not optimized out
} 
void main() {
     int x;
     x = 0;
     function(1,2,3);
     x = 1;
     printf("%d\n",x);
 }

Running this code (with the compile flag -fno-stack-protector) should result 
in the program printing out a value of 0. This indicates that the return address was 
successfully modified and the program skips over the x=1 instruction. Victory!

Shellcode
The ability to modify return addresses provides control over code execution, 
which is powerful. One common application of this is to “pop a shell,” providing 
the ability to run more powerful commands.

To pop a shell, you need to be able to run your own, arbitrary code within 
the application. To do so, you need to place shellcode within the buffer that is 
being overflowed and modify the return address to point to the beginning of this 
code. Shellcode quite literally means code that will launch a command prompt 
(shell). The shellcode can come before or after the return address depending on 
the amount of buffer space you have available. The goal is to get your shellcode 
into a buffer somewhere and then modify the return address to point to it.
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The following code shows a very simple shellcode. It uses the execve Linux 
syscall to execute /bin/sh, which is a common shell application. execve is asking 
the Linux kernel to do something. In this case, passing in the shell application 
asks Linux to launch the shell.

#include <stdio.h>
 
void main() {
   char *name[2];
 
   name[0] = "/bin/sh";
   name[1] = NULL;
   execve(name[0], name, NULL);
      exit(0);
}

This simple shellcode assembles to the following assembly code:

0804843c <main>:
 804843c:    55                       push   ebp
 804843d:    89 e5                    mov    ebp,esp
 804843f:    83 e4 f0                 and    esp,0xfffffff0
 8048442:    83 ec 20                 sub    esp,0x20
8048445:    c7 44 24 18 18 85 04     mov    DWORD PTR [esp+0x18],
0x8048518
 804844c:    08 
 804844d:    c7 44 24 1c 00 00 00     mov    DWORD PTR [esp+0x1c],0x0
 8048454:    00 
 8048455:    8b 44 24 18              mov    eax,DWORD PTR [esp+0x18]
 8048459:    c7 44 24 08 00 00 00     mov    DWORD PTR [esp+0x8],0x0
 8048460:    00 
 8048461:    8d 54 24 18              lea    edx,[esp+0x18]
 8048465:    89 54 24 04              mov    DWORD PTR [esp+0x4],edx
 8048469:    89 04 24                 mov    DWORD PTR [esp],eax
 804846c:    e8 cf fe ff ff           call   8048340 <execve@plt>
 8048471:    c7 04 24 00 00 00 00     mov    DWORD PTR [esp],0x0
 8048478:    e8 a3 fe ff ff           call   8048320 <exit@plt>

This code relies on standard C methods for execve and exit, which will move 
around in memory, making it difficult to predict their addresses and embed 
them in the code. Meaning that if you took this assembly code as is, dropped 
the opcodes into a buffer, and updated the return address to point to it, when 
the code reaches the call execve instruction, it would likely segfault. This is 
because the address compiled into the shellcode is where execve was loaded 
for that application (0x8048340), but that is not a universal address. You would 
need to know where execve is loaded for the target application (if it even has 
execve at all). This makes it necessary to find an alternative way of popping a 
shell that doesn’t involve C libraries.
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If you disassemble the execve and exit methods, you can see the underlying 
implementation, as shown in the following code sample:

mov   eax, 0xb
mov   ebx, string_addr
lea   ecx, string_addr
lea   edx, null_string
int   0x80   ;sys call for exec
mov   eax, 0x1
mov   ebx, 0x0
int   0x80   ;sys call for exit
“:/bin/sh”\0

So that solves some of the struggle, and the C library calls distill down into 
the int 0x80 syscalls covered earlier in the book. But now there is another 
challenge: the values of string_addr and null_string are unknown since 
you can’t predict where they will be loaded in memory. Again, the assembled 
shellcode placed them in that local memory space (in this example 0x8048518 
is the compiled address for /bin/sh), but when the shellcode is dropped into 
the target buffer, those addresses will be wrong.

Making the shellcode work requires figuring out another way to find the 
address that is relative and not hard-coded. One way to learn this value is to 
take advantage of return addresses in function calls; again, apply your immense 
knowledge of calling conventions and the stack! If a function call is placed right 
before the string, then the address of the string will be at the top of the stack 
within that function (because the string is sitting at the function’s return address).

To start, add in a few place holders to the existing shellcode.

jmp    ??
pop   esi
mov   [esi+0x8],esi
mov   [esi+0x7],0x0
mov   [esi+0xc],0x0
mov   eax, 0xb
mov   ebx, esi
lea   ecx, [esi+0x8]
lea   edx, [0xc+esi] 
int    0x80 
mov   eax, 0x1
mov   ebx, 0
int    0x80
call   ??
.string \"/bin/sh\"

This code sample takes the initial shellcode and adds two instructions to 
the front and two to the end. The next step is to determine the address of the 
string, which is located at the end of the assembly block. Ideally, the initial jmp 
instruction should jump down to the new call at the bottom.
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Then, this call should call the new pop esi line. Why? When using a call 
(instead of a jump) to get back up to the top of the code, the return address 
(the next address after the call) will be placed on the stack. We have no inten-
tion of doing a normal cdecl stack setup; this is abusing x86 knowledge to do 
naughty things.

After the call back up to pop esi, the top of the stack will have the return 
address, which in this case is the shell string. This address can be popped off 
the stack into esi and used in the previous shellcode.

Now, that sounds awesome, but there are currently placeholders for the jump 
and call. To figure out where those are going to jump to, we have to count our 
bytes. Here we count the compiled bytes to determine the correct offsets for 
jmp and call:

jmp    0x26                     # 2 bytes
pop   esi                       # 1 byte
mov   [esi+0x8],esi             # 3 bytes
mov   [esi+0x7],0x0             # 4 bytes
mov   [esi+0xc],0x0             # 7 bytes
mov   eax, 0xb                  # 5 bytes
mov   ebx, esi                  # 2 bytes
lea   ecx, [esi+0x8]            # 3 bytes
lea   edx, [0xc+esi]            # 3 bytes
int    0x80                     # 2 bytes
mov   eax, 0x1                  # 5 bytes
mov   ebx, 0                    # 5 bytes
int    0x80                     # 2 bytes
call   -0x2b                    # 5 bytes
.string \"/bin/sh\"

This modified code solves the problem of finding the string in memory by 
making it all relative (no hard-coded addresses) and uses the fundamental work-
ings of x86 to help. The final challenge is getting the code to run, which requires 
placing a binary representation of the code on the stack via a buffer overflow.

Stack Smashing and Stack Protection
As mentioned, by default many compilers now build in stack protections to pre-
vent rudimentary stack attacks. As an example, gcc and g++ after gcc 4.1 have 
some built-in stack protection. To practice stack smashing, it’s necessary to 
build executables using the -fno-stack-protector flag. So, what does stack 
protection look like? Let’s build an example and see what it adds.

The following code sample shows a program built with stack protection 
enabled:

0804845c <function>:
 804845c:    55                       push   ebp
 804845d:    89 e5                    mov    ebp,esp
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 804845f:    83 ec 48                 sub    esp,0x48
 8048462:    8b 45 08                 mov    eax,DWORD PTR [ebp+0x8]
 8048465:    89 45 d4                 mov    DWORD PTR [ebp- 0x2c],eax
 8048468:    65 a1 14 00 00 00        mov    eax,gs:0x14
 804846e:    89 45 f4                 mov    DWORD PTR [ebp-0xc],eax
 8048471:    31 c0                    xor    eax,eax
 8048473:    8b 45 d4                 mov    eax,DWORD PTR [ebp- 0x2c]
 8048476:    89 44 24 04              mov    DWORD PTR [esp+0x4],eax
 804847a:    8d 45 e4                 lea    eax,[ebp- 0x1c]
 804847d:    89 04 24                 mov    DWORD PTR [esp],eax
 8048480:    e8 bb fe ff ff           call   8048340 <strcpy@plt>
 8048485:    8b 45 f4                 mov    eax,DWORD PTR [ebp-0xc]
 8048488:    65 33 05 14 00 00 00     xor    eax,DWORD PTR gs:0x14
 804848f:    74 05                    je     8048496 <function+0x3a>
8048491:    e8 9a fe ff ff           call   8048330 <__stack_chk
_fail@plt>
 8048496:    c9                       leave
 8048497:    c3                       ret

The bolded lines illustrate the things added by the compiler for stack pro-
tection. The compiler added code that will save the return address on function 
entry and will verify that it is unchanged after a strcpy operation. The com-
piler knows calls like strcpy can be dangerous; this prevents the strcpy from 
overwriting the return address.

There are a few options for protecting against stack smashing, including 
gcc’s built-in stack protections, the use of memory-safe languages with bounds 
checking, and Data Execution Prevention (DEP). However, buffer overflows are 
still a threat in some cases because not all compilers will support stack protec-
tion or DEP, and as you can see, there is nuance to how it protects, not adding 
stack guards around every single call. Yet protections are focused against specific 
things like strcpy. And many compilers are pretty smart about which are most 
dangerous and need protection.

Connecting C and x86

Any program that can be written in C (or any other language) can also be written 
in assembly. In fact, higher-level languages are compiled into assembly before 
they are run by the CPU. However, in some cases, it can be helpful to mix C and 
assembly code. If you’re writing your own exploits/cracks, this is a powerful 
combination. Some things are nuanced enough that you need assembly-level 
control, and some things are just code that needs to happen, and it’s faster to 
write it in C, so feel free to mix the two!

To call a function written in another language, it’s necessary to know where 
that function is located in memory. The linker can provide this information 
automatically.
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It’s also necessary to know how to pass information to that function, i.e., 
its calling convention. For this case we will assume our C functions are using 
cdecl. Recall the following, with cdecl:

 ■ Arguments are passed on the stack pushed from right to left.

 ■ The caller is responsible for cleaning up the stack after the call returns.

 ■ The function’s return value is stored in eax.

 ■ The eax, ecx, and edx registers are available to the callee. The caller should 
save these registers’ values if needed, and the callee should save and 
restore the values of any other registers that they need.

If you follow the correct calling convention, you can call C functions from 
your assembly code.

Using C Functions in x86 Code
For x86 code to use C functions, the assembly code needs to know that the C 
function is defined elsewhere. This is done using the extern directive in the 
assembly code. For example, to call the C function, x(), in x86, use the follow-
ing instructions:

extern x
call x

The first step to using C functions in assembly is to include the  
extern function_name directive at the top of the assembly file. This tells the 
assembler that you intend to use this function, but you don’t know its location 
(address) yet. When you write call function_name in the assembly code, it will 
initially be assembled as call 0x????????. However, the program won’t be able 
to run until you put it through a linker, which will fill in the appropriate address.

The next step is to call the desired function using the cdecl calling convention. 
For example, when calling the C function int add(int x, int y), you’d use the 
following assembly code. Remember, arguments are pushed from right to left, 
and you need to clean up the stack after the call and place the return value in eax.

push [y]
push [x]
call add
add esp, 8
mov [sum], eax

After writing the assembly code, the next step is to assemble it using nasm. 
Here’s an example: nasm example.asm –o example.o.

At this point, everything will be in assembly except those placeholders. If you 
had no external functions, your code would be ready to run, but since it does, 
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you need a linker’s help. The final step is to link your assembly code to the C 
function. If you’re using gcc and calling functions from the C library, gcc can 
handle this automatically. For example, gcc example.o -o example will use 
the linker to fill out any addresses that it knows, transforming call 0x???????? 
to call 0x08048320.

For example, consider the following example, which runs
printf hello world 42:

extern printf
global main
 
section .text
main:
 
push 42
push world
push hello
call printf
add esp, 12
 
mov eax, 1
mov ebx, 0
int 0x80
 
section .data
hello: db "hello %s %d", 0xa, 0
world: db "world"

This assembly code can be assembled using nasm –f elf example.asm and 
linked with gcc –m32 example.o –o example.

It can be very helpful and powerful to be able to call simple things like printf 
from your assembly code while you’re testing your crack/patch ideas.

Using x86 Functions in C Code
It’s also possible to call assembly functions from C code. The C program must 
have a prototype for the x86 functions that it wants to use. For example, in C, to 
use the assembly function f, you need the prototype int f(void);. A prototype 
is a fancy way of saying that you need to declare how that function definition 
would look if it was in a higher-level language (what’s its name, what argu-
ments does it take, and what does it return).

To use x86 functions in your C code, they need to be exported from your 
assembly code so that the linker can find them. To export an x86 function in 
your assembly file, label it with the global directive, as shown in the following 
example:

global f
f:
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  mov eax, 0xdabbad00
  ret

Then, assemble your assembly code with nasm and compile and link the 
complete program with gcc.

For example, consider the following C program:

// x.c
 
#include <stdio.h>
 
int add(int,int);
 
int main(void) 
{
    int x=add(1,2);
    printf("%d\n",x);
    return 0;
}

This program uses the add function, which is defined in the following assem-
bly code:

; y.asm
 
add:
  push ebp
  mov ebp, esp
 
  mov eax, [ebp+8]
  add eax, [ebp+12]
 
  leave
  ret

To link and assemble this program, run the following commands:

nasm –f elf y.asm # produces y.o object
gcc –m32 –c x.c # produces x.o object
gcc x.o y.o –o adder # produces executable adder
# run with ./adder

_start vs. main()
x86 assembly programs commonly begin with a label named _start. C pro-
grams, on the other hand, start with a main() function. What’s the difference?
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Execution of a program (whether written in C, assembly, or any other lan-
guage) doesn’t really start at main. For example, consider the simplest possible 
C function, as shown here:

int main() 
{
return 0;
}

Compiling this with gcc simple.c –o simple translates your program to 
assembly. As part of this process, the compiler adds a function called _start, 
and _start calls main.

The resulting compiled main function has the following assembly:

80483b4:     55                   push   ebp
 80483b5:    89 e5                mov    ebp,esp
 80483b7:    5d                   pop    ebp
 80483b8:    c3                   ret

The start function looks like this:

8048300:     31 ed                xor    ebp,ebp
 8048302:    5e                   pop    esi
 8048303:    89 e1                mov    ecx,esp
 8048305:    83 e4 f0             and    esp,0xfffffff0
 8048308:    50                   push   eax
 8048309:    54                   push   esp
 804830a:    52                   push   edx
 804830b:    68 30 84 04 08       push   0x8048430
 8048310:    68 c0 83 04 08       push   0x80483c0
 8048315:    51                   push   ecx
 8048316:    56                   push   esi
 8048317:    68 b4 83 04 08       push   0x80483b4
 804831c:    e8 cf ff ff ff       call   80482f0 <__libc_start_main@plt>
 8048321:    f4                   hlt

The start function is responsible for a few different tasks, including the 
following:

 ■ Initializing the frame pointer

 ■ Configuring the stack

 ■ Setting up the standard arguments (parameters to main())

 ■ Calling libc_start_main, which performs security checks, threading 
subsystem, init, calls your main function, and finally calls exit()

When writing pure assembly code, you write everything yourself. You don’t 
need all of the setup C does and can write your own _start function.
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When combining assembly and C, you need gcc to step in. Often, gcc wants to 
provide its own _start function and expects you to provide a main() function.

When writing an assembly program that will be linked against the standard 
C library, do the following:

1. Use main instead of _start (libc_start_main will call main() for you).

2. Set up a stack frame only, not the entire stack (_start has already config-
ured your stack).

3. Finish with ret, not int 0x80 (ret will return to libc_start_main, which 
will call the C exit function, which will call int 0x80 for you).

4. Set the return value in eax before ret’ing (usually 0).

For example, consider the following stand-alone assembly program, which 
defines its own _start:

global _start
 
section .text
_start:
    mov  esp, stack
    mov  ebp, esp
 
    ...
 
    mov  esp, ebp
 
    mov  eax, 1
    mov  ebx, 0
    int  0x80
    
section .data
times 128 db 0
stack equ $- 4

When linking to libc, the program should use main instead.

global main
 
section .text
main:
    push ebp
    mov  ebp, esp
 
    ...
 
    mov  eax, 0
    leave
    ret



268 Chapter 17 ■ Bonus Topics

Standard Arguments
In C, arguments can be read from the command link with stdargs. For example, 
main() is commonly defined as int main(int argc, char **argv), which pro-
vides access to these command-line arguments. Recall that argc is the number 
of arguments passed in, and argv is an array that holds those arguments.

It’s also possible to access command-line arguments when writing a main 
function in assembly. Your assembly version of main will be automatically called 
with cdecl. Recall that the following:

 ■ Arguments are passed on the stack, pushed on from right to left.

 ■ Arguments are at [ebp+8], [ebp+12], etc.

 ■ argc will be the last argument and is at the top of the list of arguments 
on the stack, at [ebp+8].

 ■ argv is the first argument pushed to the stack and will be at [ebp+12].

For example, the following assembly program will print the first command-
line argument:

extern printf
global main
 
main:
   push  ebp 
   mov   ebp, esp 
 
   mov   eax, [ebp+12]  ; load argv into eax
   push  dword [eax+4]  ; push argv[1]
   call  printf         ; print argv[1]
   add   esp, 4         ; clean up stack
   mov   eax, 0
   leave
   ret

Mixing C and Assembly
In C, it’s possible to switch seamlessly between C and assembly code. This is 
called inline assembly, named for the fact that the assembly is inlined with your 
source code.

Inline assembly is not part of the C specification, but most compilers will 
support it via an extension. However, the syntax is unique for each compiler. 
In gcc, this is the AT&T x86 syntax.

The basic form of this is __asm__ (“assembly code here”);. When com-
piling, gcc compiles the C code to assembly and pastes in the assembly code 
from the __asm__ directive.
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For example, consider the following C program:

int main(void)
{
    // set keyboard control register
 
    __asm__ ("mov  $0x10010001, %eax");
    __asm__ ("out  %eax, $0x64");
 
    return 0;
}

The extended form of inline assembly lets you set advanced “constraints.” 
These constraints can include the following:

 ■ Input variables: C variables that you want to manipulate using assembly.

 ■ Output variables: Values produced in the inline assembly code that you 
want to use in the C code.

 ■ Clobbered registers: gcc translates the C to assembly and figures out 
which registers to use. This list ensures that the registers used by the C 
and assembly code won’t conflict.

Extended assembly can be specified as follows:

__asm__(
             “assembly”
             : input constraints
             : output constraints
             : clobber list
             );

The following code sample shows an example of using extended assembly in C:

#include <stdio.h>
 
int main(void)
{
    // getting the return address for the current function
 
    int x;
 
    __asm__("\
            movl 0x4(%%ebp), %%eax  \n\
            movl %%eax, %0          \n\
            "
            :"=r"(x)
            :
            :"%eax"
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           );
 
 
    printf("%08x\n", x);
 
    return 0;
}

Inline assembly is used extensively in C for the following:

 ■ An operating system kernel (check out the Linux kernel source).

 ■ Embedded systems.

 ■ Any code that needs to work with hardware.

 ■ Any code that needs to be very fast.

 ■ You’ll see it from time to time if you ever work with C, and you may need 
to use it yourself.

Remember that when using inline assembly, you’ll need to add a new flag 
to gcc. For example, the command gcc –masm=intel myFile.c tells gcc that 
you’ve written some intel assembly into your C file.

Summary

This chapter demonstrated how to use an understanding of x86 and the stack 
for hacking. By smashing the stack and inserting shellcode, a reverser can trick 
a program into running the attacker’s code.
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Wow, this has been quite a journey! We’ve covered offense to defense; high-level 
languages down to assembly; registers, control flow, reverse engineering; patch-
ing, tools, techniques, and mindset. If you’ve made it this far, you have an 
amazing baseline of knowledge to build from as you continue to move forward.

And as you do move forward, you will always encounter something new. At 
first, it will be assembly instructions you don’t know, then defenses you’ve never 
seen, then architectures you’ve never heard of, and of course the latest, greatest 
tool-of-the-day or defense-of-the-year. But now that you have the basics, you’ll 
find that new things become easier and easier to pick up quickly.

Now that you know mov, you can easily understand the string version movs. 
You’ve worked with bit manipulations like not, so negation with neg makes 
sense pretty quickly. You’ve mastered comparisons like cmp, so cmps isn’t  
much of a stretch, and from there how about cmpxchg or cmpxchg16b or  
lock cmpxchg8b? The gist is: now that you have the basics, it becomes increasingly 
easy to understand new instructions; whether it’s ud (undefined instruction) or  
gf2p8affineinvqb (Galois field affine transformation inverse), the fundamen-
tals tend to be mostly the same for everything.

But of course, learning more doesn’t end there. New instructions are great, 
but if you keep on this path, you’ll soon encounter entirely new architectures. 
The good news is, they also tend to follow the same basic patterns, and now 
that you’ve mastered one, you’ll be able to understand new ones in no time. 
x64 (64-bit x86) is easy now that you’ve done x86— just extend the registers to 
64 bits (rax instead of eax, rsp instead of esp) and follow some different calling 
conventions (AMD64 ABI in addition to cdecl), and you’ll be able to apply all 
the same tools and techniques to 64-bit code. From there, Arm comes pretty 
easily— again, it’s just new registers (r0 instead of rax), instructions (b instead 

Conclusion
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of jmp), and calling conventions (Arm instead of cdecl). The underlying patterns 
tend to be mostly the same, so whatever your target— PowerPC, MIPS, RISC-V, 
MIL-STD-1750A, etc.— you can usually learn the basics in a few hours. Expanding 
to new architectures will also let you apply your skills to new devices. Whether 
it’s phones, routers, cars, or satellites, the fundamentals are fairly uniform.

Naturally, as you keep advancing, you won’t just encounter new architectures; 
you’ll encounter new tools as well. The good news here, too, is that they tend 
to build off of the same base set of concepts. We’ve worked through a bevy of 
disassemblers, hex editors, debuggers, and decompilers. Now it’s time to start 
exploring new options to see what clicks with you. Ghidra, Binary Ninja, and 
Cutter/radare2 are popular next steps that will build off of your experience 
with IDA and offer even more ways to dissect and understand a program. As 
you grow your arsenal of tools, you’ll gradually build up your own scripts, 
workflows, and strategies to become increasingly proficient with more and 
more difficult targets.

And, of course, if you keep at it, you’ll begin to encounter new defenses. 
Whether it’s the latest anti-cheat in online gaming, a new opaque predicate 
obfuscation from academia, or creative new hashing in an esoteric keychecker, 
keeping up-to-date with the latest trends will help you stay sharp, whether your 
passion is offense or defense. Both academic journals and cracking forums can 
be fantastic resources here.

But whatever your end goals with this skill set, the singular key to moving 
forward is practice. Try writing your own keychecker, and then see if you 
can crack it— playing both sides at once can offer interesting insights into the 
challenges and limitations of an adversary. Crackmes offer a fantastic, fun, 
and (mostly) safe way to get experience in reverse engineering and software 
modification on a wide variety of languages and architectures. Whenever you 
have a few minutes, grab a crackme that seems in line with your experience 
and skill level and see if you can defeat it; if you have a few hours, find one 
that uses a language you don’t know or defenses you’ve never seen. Beyond 
cracking, modifying simple programs can quickly offer new insights and expand 
your skill set. Drop your favorite 90s video game into IDA and see if you can  
add infinite lives; try out Ghidra on your favorite text editor and see if you  
can add a secret menu. Alternatively, capture-the-flag competitions can be an 
exciting way to push your reverse engineering skills to their limit, while simulta-
neously branching into new areas like binary exploitation and computer forensics.

However you proceed, stay persistent, keep practicing, and continue to push 
your limits into new domains. As you do, we hope that this book has helped 
you establish a broad baseline of skills and that you’ll use them to dive ever 
deeper into this awesome facet of security.
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for loop, 90–91
OR (||), 100
switch statement, 91–96
while loop, 88–89

logical shift, 38
ltrace, 140–143

M
machine code, 7–9
machine instructions, 9
main function, 255, 265–267
market share, of x86, 13
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public key infrastructure (PKI), 231
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register access, 110
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sys_write, 46–47
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sys_write function, 46–47

T
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Interactive Disassembler 
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how it works, 225
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protection and, 226
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Windows Calculator, 162–165
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x86



284 Index ■ X–Z
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memory access, 24–26
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41
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and instruction, 37
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mov instruction, 33–34, 41
mul instruction, 36
nop instruction, 39
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sal instruction, 38
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