

x86 Software Reverse-
Engineering, Cracking, and

Counter- Measures

x86 Software Reverse-
Engineering, Cracking,
and Counter- Measures

Stephanie Domas
Christopher Domas

Copyright © 2024 by John Wiley & Sons Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBNs: 9781394199884 (Paperback), 9781394199907 (ePDF), 9781394199891 (ePUB)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per- copy fee to the Copyright Clear-
ance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750- 8400, fax (978) 750- 4470, or on the web
at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748- 6011, fax (201) 748- 6008,
or online at www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates in the United States and other countries and may not be used without written permission.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with
any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness
of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materi-
als. The advice and strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Further, readers should be aware that websites listed in this work may have
changed or disappeared between when this work was written and when it is read. Neither the publisher nor
authors shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Cus-
tomer Care Department within the United States at (800) 762- 2974, outside the United States at (317) 572- 3993
or fax (317) 572- 4002.

If you believe you’ve found a mistake in this book, please bring it to our attention by emailing our reader sup-
port team at wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at www
.wiley.com.

Library of Congress Control Number: 2023951083

Cover image: © CSA- Printstock/Getty Images
Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
mailto:wileysupport@wiley.com
http://www.wiley.com
http://www.wiley.com

v

About the Authors

With more than 10 years of ethical hacking, reverse engineering, and advanced
vulnerability analysis as a defense contractor, Stephanie Domas has a deep
knowledge of and passion for the hacker mindset. Pivoting her offensive skills
to the defense, she built and led two cybersecurity businesses focused on defense
of embedded systems, medical devices, and the healthcare industry. She cur-
rently serves as a prominent industry consultant and advisor with a broad range
of tech companies and device manufacturers, from the newest startups to the
industry giants, and is the CISO of Canonical, driving Canonical to be the most
trusted computational partner in all of open source. Previously, she served as
the chief security technology strategist at Intel where she owned the cross- Intel
security technology strategy, formulating and implementing strategies that
would accelerate Intel’s strength, competitiveness, and revenue growth in the
area of security. Stephanie is a passionate educator, strategist, speaker, advisor,
and security enthusiast.

Christopher Domas is a security researcher primarily focused on firmware,
hardware, and low- level processor exploitation. He is best known for releasing
impractical solutions to nonexistent problems, including the world’s first single
instruction C compiler (M/o/Vfuscator), toolchains for generating images in
program control flow graphs (REpsych), and Turing machines in the vi text
editor. His more relevant work includes the sandsifter processor fuzzer, rosen-
bridge backdoor, the binary visualization tool ..cantor.dust.., and the memory
sinkhole privilege escalation exploit.

vii

Howard Poston is a copywriter, author, and course developer with experience
in cybersecurity and blockchain security, cryptography, and malware anal-
ysis. He has a master’s degree in cyber operations, a decade of experience in
cybersecurity, and more than five years of experience as a freelance consultant
providing training and content creation for cyber and blockchain security. He is
also the creator of more than a dozen cybersecurity courses, has authored two
books, and has spoken at numerous cybersecurity conferences.

About the Technical Writer

ix

John Toterhi is a senior security researcher specializing in embedded system
reverse engineering, vulnerability research, and capability development. John
started his career in 2010 as a civilian malware analyst for the United States Air
Force, where he reverse- engineered malicious software threats to U.S. air and
space assets. Since then, John has worked for multiple government and private
organizations on large- scale software vulnerability discovery and CNO tool
development. John is also a guest lecturer at Ohio State University, teaching
reverse engineering and malware analysis, and co- leads a private offensive
security bootcamp that helps prepare the next generation of cyber engineers to
solve tomorrow’s cyber challenges.

About the Technical Editor

xi

Contents at a Glance

Introduction xxiii

Chapter 1 Decompilation and Architecture 1

Chapter 2 x86 Assembly: Data, Modes, Registers, and Memory Access 13

Chapter 3 x86 Assembly: Instructions 31

Chapter 4 Building and Running Assembly Programs 43

Chapter 5 Understanding Condition Codes 57

Chapter 6 Analyzing and Debugging Assembly Code 65

Chapter 7 Functions and Control Flow 77

Chapter 8 Compilers and Optimizers 127

Chapter 9 Reverse Engineering: Tools and Strategies 137

Chapter 10 Cracking: Tools and Strategies 147

Chapter 11 Patching and Advanced Tooling 179

Chapter 12 Defense 203

Chapter 13 Advanced Defensive Techniques 217

Chapter 14 Detection and Prevention 229

Chapter 15 Legal 239

xii Contents at a Glance

Chapter 16 Advanced Techniques 245

Chapter 17 Bonus Topics 251

Conclusion 271

Index 273

xiii

Contents

Introduction xxiii

Chapter 1 Decompilation and Architecture 1
Decompilation 1

When Is Decompilation Useful? 2
Decompiling JIT Programming Languages 2
Defending JIT Languages 3

Lab 1: Decompiling 4
Skills to Practice 4
Takeaways 5

Architecture 5
Computer Architecture 5

The Central Processing Unit 6
Bridges and Peripherals 6
Memory and Registers 6

Assembly 7
Introduction to Machine Code 7
From Machine Code to Assembly 7
Instruction Set Architectures and Microarchitectures 9
RISC vs. CISC Computer Architectures 10

Summary 12

Chapter 2 x86 Assembly: Data, Modes, Registers, and Memory Access 13
Introduction to x86 13
Assembly Syntax 14
Data Representation 16

Number System Bases 16
Bits, Bytes, and Words 17

xiv Contents

Working with Binary Values 19
Zero-Extension and Readability 19
Bit and Byte Significance 19
Endianness 20

Registers 20
Registers in x86 21

x86 General-Purpose Registers 21
Special-Purpose Registers 23

Working with Registers 23
64-Bit Registers 24

Memory Access 24
Specifying Data Lengths 24

Addressing Modes 27
Absolute Addressing 27

Example: Global Variables 27
Indirect Addressing 27

Example: Pointers 27
Base + Displacement Addressing 28
Indexed Addressing 28

Example: Arrays 28
Based-Index Addressing 28

Example: Structs 29
Summary 29

Chapter 3 x86 Assembly: Instructions 31
x86 Instruction Format 31
x86 Instructions 32

mov 33
Hands-on Example 35

inc, dec 35
add, sub 35
mul 36
div 36

Hands-on Example 37
and, or, xor 37
not 37
shr, shl 38
sar, sal 38
nop 39
lea 39

Hands-on Example 40
Putting It All Together 40
Common x86 Instruction Mistakes 41

When In Doubt, Look It Up 41
Summary 42

Chapter 4 Building and Running Assembly Programs 43
Output 43

Controlling Pins 45

 Contents xv

Tedium 45
System Calls 46

sys_write 46
sys_exit 47
Printing a String 47

Building and Linking 48
Building and Linking in Linux 48
Writing an Assembly Program 49

Sections and Stat 49
Labels 49
Constants 50
Global Data 50
Strings 51
times 51
$ 52

objdump 52
Lab: Hello World 53

Skills 53
Takeaways 53

ASCII 54
Identifying ASCII Strings 55
ASCII Manipulation Tip 55

Summary 56

Chapter 5 Understanding Condition Codes 57
Condition Codes 57

eflags 58
Carry Flag 58
Zero Flag 59
Sign Flag 59
Overflow Flag 59
Other Status Flags 60

Operations Affecting Status Flags 60
add 60
sub 61
cmp 61
test 63

Summary 64

Chapter 6 Analyzing and Debugging Assembly Code 65
Binary Analysis 65

Static and Dynamic Analysis 65
Debugging 66

Breakpoints 66
Software Breakpoints 67
Hardware Breakpoints 67

gdb 68

xvi Contents

Debugging with gdb 68
Launching gdb 68
Disassembly with gdb 69
Starting and Stopping Code in gdb 69
gdb Breakpoints 69
gdb info Commands 70
Stepping Through Instructions 71
Examining Memory 72

Segmentation Faults 73
Lab: Shark Sim 3000 73

Skills 74
Takeaways 74

Tuning Out the Noise 74
Summary 75

Chapter 7 Functions and Control Flow 77
Control Flow 77

The Instruction Pointer 78
Control Flow Instructions 78

jmp 78
Conditional Jumps 79
Pitfalls of Conditional Jumps 80
Example 81

Logic Constructs in x86 81
if (. . .) {. . .} 82
if (. . .) { . . . } else { . . . } 83

if (. . .) { . . . } else if { . . . } else { . . . } 85
do { . . . } while (. . .); 87
while (. . .) { . . . } 88
for (. . .; . . .; . . .) { . . . } 90
switch (. . .) { . . . } 91

Building a Jump Table 92
Continue 96
break 97
&& 99
|| 100

Stack 100
How the Stack Works 101
The x86 Stack 101

Push and Pop 102
The Stack as a Scratch Pad 104
Using Pop Cautiously 105

Function Calls and Stack Frames 106
Functions in x86 106

call 106
ret 106

 Contents xvii

Stack Analysis 110
Calling Conventions 110

Why Conventions Are Necessary 111
Introduction to Calling Conventions 111

cdecl 112
Saving Registers 113
Return Values 114
Accessing Parameters 115

Stack Frames 116
Prologues and Epilogues 117
Accessing Parameters 119
Local Variables 121
Shortcuts 122
Stack Alignment 122

The Big Picture 123
Things to Memorize 124

Summary 125

Chapter 8 Compilers and Optimizers 127
Finding Starting Code 127
Compilers 130

Optimization 130
Stripping 132
Linking 134

Static Linking 134
Dynamic Linking 134
Security Impacts of Linking 135

Summary 136

Chapter 9 Reverse Engineering: Tools and Strategies 137
Lab: RE Bingo 138

Skills 138
Takeaways 138

Basic REconnaissance 138
objdump 139
strace and ltrace 140

ltrace 140
strace 140
strace Example: echo 140
strace Example: Malicious Kittens 141

strings 143
Dependency Walker 144

Reverse Engineering Strategy 144
Find Areas of Interest 145
Iteratively Annotate Code 145

Summary 146

xviii Contents

Chapter 10 Cracking: Tools and Strategies 147
Key Checkers 147

The Bad Way 148
A Reasonable Way 149
A Better Way 149

Digitally Signed Keys 150
The Best Way 150
Other Suggestions 150

Prefer Offline Activation 151
Perform Partial Key Verification 151
Encode Useful Data in the Key 151

Key Generators 151
Why Build Key Generators? 152
The Philosophy of Key Generation 152
Cracking Different Types of Key Checks 153

Key Check Type I: Transform Just the Username 153
Key Check Type II: Transform Both 153
Key Check Type III: Brute Forceable 154

Defending Against Keygens 154
Lab: Introductory Keygen 155

Skills 155
Takeaways 155

Procmon 155
Example: Notepad.exe 155
How Procmon Aids RE and Cracking 158

Call Stacks 158
File Operations 158
Registry Queries 160

Resource Hacker 160
Example 161
Mini-Lab: Windows Calculator 162

Patching 165
Patching vs. Key-Genning 165
Where to Patch 166
NOPs 166

Other Debuggers 167
OllyDbg 167
Immunity 168
x86dbg 168
WinDbg 168

Debugging with Immunity 168
Immunity: Assembly 168
Immunity: Modules 170
Immunity: Strings 170
Immunity: Running the Program 172

 Contents xix

Immunity: Exceptions 173
Immunity: REwriting the Program 174

Lab: Cracking with Immunity 176
Skills 176
Takeaways 177

Summary 177

Chapter 11 Patching and Advanced Tooling 179
Patching in 010 Editor 179
CodeFusion Patching 182
Cheat Engine 184

Cheat Engine: Open a Process 184
Cheat Engine: View Memory 185
Cheat Engine: String References 187
Cheat Engine: REwriting Programs 187
Cheat Engine: Copying Bytes 188
Cheat Engine: Getting Addresses 188

Lab: Cracking LaFarge 190
Skills 190
Takeaways 190

IDA Introduction 190
IDA: Strings 192
IDA: Basic Blocks 193
IDA: Functions and Variables 194
IDA: Comments 196
IDA: Paths 197

IDA Patching 198
Lab: IDA Logic Flows 200

Skills 201
Takeaways 201

Ghidra 201
Lab: Cracking with IDA 201

Skills 201
Takeaways 202

Summary 202

Chapter 12 Defense 203
Obfuscation 203

Evaluating Obfuscation 205
Automated Obfuscation 206

Name Mangling 206
String Encryption 207
Control Flow Flattening 209
Opaque Predicates 209
Instruction Substitution 210

Obfuscators 210
Defeating Obfuscators 211

xx Contents

Lab: Obfuscation 211
Skills 211
Takeaways 212

Anti-Debugging 212
IsDebuggerPresent() 212
Debug Registers 213
RDTSC 214
Invalid CloseHandle() 214
Directory Scanning 215
Offensive Anti-Debugging 215
Defeating Anti-Debugging 215

Lab: Anti-Debugging 216
Skills 216
Takeaways 216

Summary 216

Chapter 13 Advanced Defensive Techniques 217
Tamper- Proofing 217

Hashing 218
Signatures 218
Watermark 218
Guards 219

Packing 219
How Packers Work 220
Is This a Strong Protection? 220
Defeating Packing 221
PEiD 221

Lab: Detecting and Unpacking 222
Skills 222
Takeaways 223

Virtualization 223
How Code Virtualization Works 225
Layered Virtualization 225
Issues with Virtualization 225
Is This a Strong Protection? 226
Defeating Virtualization 226

Cryptors/Decryptors 227
Is This a Useful Protection? 227
Defeating Cryptors 227

Summary 227

Chapter 14 Detection and Prevention 229
CRC 229

Is This a Strong Protection? 230
Code Signing 230

How to Code Sign 230
How to Verify a Signed Application 231

 Contents xxi

Is Code Signing Effective? 232
Code Signing vs. CRC 232
Is This a Strong Protection? 232

RASP 232
Function Hooking 233
Risks of RASP 233
Is This a Strong Protection? 233

Allowlisting 234
How Allowlisting Works 234

Breaking Name- Based Allowlists 234
Breaking Name and Hash- Based Allowlists 234
Example: Metasploit 235

Is This a Strong Protection? 235
Blocklisting 235

Is This a Strong Protection? 236
Remote Authentication 236

Remote Authentication Example 237
Is This a Strong Protection? 237

Lab: ProcMon 238
Takeaways 238

Summary 238

Chapter 15 Legal 239
U.S. Laws Affecting Reverse Engineering 239

The Digital Millennium Copyright Act 239
Computer Fraud and Abuse Act 240
Copyright Act 241
Important Court Cases 242
Fair Use 243
DMCA Research Exception 243
Legality 244

Summary 244

Chapter 16 Advanced Techniques 245
Timeless Debugging 245

Binary Instrumentation 246
Intermediate Representations 246
Decompiling 247
Automatic Structure Recovery 247
Visualization 247
Deobfuscation 248
Theorem Provers 248
Symbolic Analysis 248

Summary 249

Chapter 17 Bonus Topics 251
Stack Smashing 251

Shellcode 258

xxii Contents

Stack Smashing and Stack Protection 261
Connecting C and x86 262

Using C Functions in x86 Code 263
Using x86 Functions in C Code 264
_start vs. main() 265
Standard Arguments 268
Mixing C and Assembly 268

Summary 270

Conclusion 271

Index 273

xxiii

Introduction

Reverse engineering and software cracking are disciplines with a long, rich
history. For decades, software developers have attempted to build defenses
into their applications to protect intellectual property or to prevent modifi-
cations to the program code. The art of cracking has been around nearly as
long as reverse engineers have been examining and modifying code for fun
or profit.

Before diving into the details of how reverse engineering works, it is useful to
understand the context in which these disciplines reside. This chapter describes
what to expect from this book and dives into the history and legal considerations
of software reverse engineering and cracking.

Who Should Read This Book

From security professionals to hobbyists, this book is for anyone who wants
to learn to take apart, understand, and modify black- box software. This book
takes a curious security- minded individual behind the curtain to how software
cracking and computers work. Learning how an x86 computer works is not only
powerful from a reverse- engineering and cracking perspective, but will make
each reader a stronger developer, with advanced knowledge they can apply to
code optimization, efficiency, debugging, compiler settings and chip selection.
Then the curtain continues to pull back as readers learn how software cracking
happens. Readers will learn about tools and techniques that real- world software
crackers use, and they will set their newfound knowledge to the test by cracking
real- world applications of their own in numerous hands- on labs. We then circle
back to understand defensive techniques for combating software cracking.

xxiv Introduction

By learning both the offensive and defensive techniques, readers will walk away
as strong software crackers or software defenders.

What to Expect from This Book

This book is based on these three core tenets of reverse engineering:

 ■ There is no such thing as uncrackable software.

 ■ The goal in offense is to try to go faster.

 ■ The goal in defense is to try to slow down.

Based on this philosophy, any software can be reverse engineered and have
its secrets stolen and protections circumvented. It’s just a matter of time.

Like other areas of cybersecurity, both offensive and defensive reverse engi-
neers benefit from having a similar set of skills. This book is designed to provide
an introduction to these three interrelated skill sets:

 ■ Reverse engineering: Reverse engineering is the process of taking soft-
ware apart and figuring out how it works.

 ■ Cracking: Cracking builds on reverse engineering by manipulating a
program’s internals to get it to do something that it was not intended to.

 ■ Defense: While all software is crackable, defenses can make a program
more difficult and time- consuming to crack.

Both offensive and defensive reverse engineers benefit from the same set
of skills. Without an understanding of reverse engineering and cracking, a
defender can’t craft effective protections. On the other hand, an attacker can
more effectively bypass and overcome these protections if they can understand
and manipulate how a program works.

Structure of the Book
This book is organized based on these three core capabilities and skill sets. The
structure is as follows:

PART TOPICS GOAL

Part 1: Background History and legal considerations

x86 crash course

Understand x86 and learn
to move quickly.

 Introduction xxv

PART TOPICS GOAL

Part 2: Software
Reverse Engineering

Reconnaissance

Key checkers

Key generators

Process monitoring

Resource manipulation

Static analysis

Dynamic analysis

Writing key gens

Cracking software

Master the tools,
approaches, and mindset
required to take software
apart and understand its
inner workings.

Part 3: Software
Cracking

Manual patching

Automated patchers

Advanced dynamic analysis

Execution tracing

Advanced static analysis

Trial periods

Nag screens

More key gens

More cracks

Master the tools,
approaches, and mindset
necessary to isolate
behavior and modify
software.

Part 4: Defenses,
Countermeasures, and
Advanced Topics

Obfuscation/deobfuscation

Anti- debugging/
anti- anti- debugging

Packing/unpacking

Cryptors/decryptors

Architectural defenses

Legal

Timeless debugging

Binary instrumentation

Intermediate representations

Decompiling

Automatic structure recovery

Visualization

Theorem provers

Symbolic analysis

Cracking extravaganza

Master defenses and
counter- defenses.

Evaluate defensive posture
and tradeoffs.

Explore advanced topics.

Exercise reverse
engineering and cracking
tools, techniques, and
mindset.

xxvi Introduction

Hands- On Experience and Labs
The best way to learn reverse engineering and software cracking is by doing it.
For this reason, this book will include several hands- on labs that demonstrate
the concepts described in the text.

The goal of this book isn’t to teach a particular set of tools and techniques.
While the focus is on x86 software running in Windows, many of the approaches
and techniques will translate to other platforms. This book will attempt to dem-
onstrate a wide range of tools, including open- source, freeware, shareware,
and commercial solutions. With an understanding of what tools are available
and their relative strengths and weaknesses, you can more effectively select the
right tool for the job.

Hands- on labs and exercises will also focus on reverse engineering and cracking
a variety of different targets, including the following:

 ■ Real software: Some exercises will use real- world software carefully
selected to avoid copyright violations.

 ■ Manufactured examples: Software written specifically for this book to illus-
trate concepts that are impractical to demonstrate with real- world examples.

 ■ Crackmes: Manufactured software developed by crackers to illustrate a
concept or challenge others.

Companion Download Files
The book mentions some additional files, such as labs or tools. These items
are available for download from https://github.com/DazzleCatDuo/
X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES.

History

Before diving into the nitty- gritty details of cracking and reverse engineering,
it is useful to understand its history. Software protections and the tricks and
techniques used to overcome them have been evolving for decades.

The First Software Protections
The first software copy protections emerged in the 1970s. Some of the early
movers in the space were as follows:

 ■ Apple II: The Apple II incorporated proprietary disk drivers that would
allow writing at half- tracks, writing extra rings, and staggering and over-
lapping sectors. The purpose of this was to make the disks unusable by
non- Apple machines and software that wouldn’t know to read and write
at these odd offsets.

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

 Introduction xxvii

 ■ Atari 800: Atari 800 systems would intentionally include bad sectors in
their disks and attempt to load these sectors. If these loads didn’t return
a “bad sector” error, then the software knew it wasn’t a valid disk and
would halt execution.

 ■ Commodore 64: Legitimate Commodore 64 software was distributed only
on read- only disks. The software would attempt to overwrite the disk,
and, if it succeeded, it knew the disk was counterfeit.

These protections all depended on unusual behavior by the software, such
as the use of invalid memory or attempting to overwrite the program’s own
code. Defeating these protections required an understanding of how the soft-
ware worked.

The Rise of Cracking and Reverse Engineering
The rise of cracking and reverse engineering began in the 1980s. However, these
early crackers weren’t in it for the money. Cracking was a contest to determine
who could figure out and bypass software protections the quickest.

Over the next several decades, the reverse engineering and cracking scene
evolved. These are some of the key dates in the history of reverse engineering:

1987: Fairlight’s formation in 1987 by Bacchus defines one of the first operational
groups. Fairlight will later come to prominence in FBI crackdowns of the
early 2000s. For more historic details visit www.fairlight.to and csdb.dk.

1990: Elliot J. Chikofsky and James H. Cross II defined reverse engineering
as “the process of analyzing a subject system to identify the system’s
components and their interrelationships and to create representations of
the system in another form or at a higher level of abstraction. (“Reverse
Engineering and Design Recovery: A Taxonomy.” IEEE Software, Vol. 7,
Issue 1, Jan 1990).

1997: Old Red Cracker (handle +ORC) founds the Internet- based High Cracking
University (+HCU) to allow everyone to learn about cracking. +ORC
released “how to crack” lessons online and authored academic papers.
+HCU students had handles that began with an +.

1997–2009: The “warez scene” emerges with groups competing to be the first
to release copyrighted material. Insiders (aka “suppliers”) provided early
access to their groups, “crackers” broke the protections, and “couriers”
distributed cracked software to FTP sites. Between 2003 and 2009, approx-
imately 3,164 active groups were on “the scene”, competing primarily for
pride and bragging rights, not money.

2004: The FBI and other countries begin raids against “the scene”. Operation
Fastlink (2004) led to the conviction of 60 warez members, and Operation
Site Down (2005) took down 25 warez groups.

http://www.fairlight.to

xxviii Introduction

The arms race between software protections and crackers continues to rage,
and reverse engineering is an invaluable skill set on both sides. Crackers need
to understand how a program works to manipulate it and bypass defenses. On
the defensive side, it’s important to understand the latest cracking techniques
to develop defenses that protect intellectual property and other sensitive data.

Legal

The best way to learn is by doing. This is why this book includes labs and exer-
cises with real- world software as well as manufactured examples and crackmes.
We are not lawyers, and those with concerns should consult a lawyer. We recom-
mend the Electronic Frontier Foundation (www.eff.org). Chapter 15 covers legal
topics because we feel it’s important for everyone to understand the US- based
laws that affect this area. There are two main laws to be aware of: the Copyright
Act and the Digital Millennium Copyright Act (DMCA).

The Fair Use Clause of the Copyright Act (Copyright Act, 17 U.S.C. § 107) states
that reverse engineering falls under “fair use” when done for “. . .purposes such
as criticism, comment, news reporting, teaching (including multiple copies for
classroom use), scholarship, or research. . ..” This exception is balanced against
“the effect of the use upon the potential market for or value of the copyrighted
work.” In essence, reverse engineering used for educational purposes is legal
if you don’t share or sell the cracked software.

In October 2016, the DMCA also added an exception for good faith security
research. It states, “accessing a computer program solely for purposes of good-
faith testing, . . .where such activity is carried out in a controlled environment
designed to avoid any harm to individuals or the public, . . .and is not used or
maintained in a manner that facilitates copyright infringement.”

The software examined in this book and used in exercises was carefully
selected to fall under the fair use and DMCA exceptions. If you are planning
to reverse engineer and crack software for anything other than self- education,
you should consult a lawyer. The legal considerations of reverse engineering
will also be explored in greater detail in a later chapter.

Software reverse engineering and cracking have a rich history, and this skill
set has both offensive and defensive applications. However, it is important to
understand the laws around these disciplines and ensure that your activities
fall under the good- faith testing and fair use exemptions.

This book is designed to provide a strong foundation in the skills and tools
used for software reverse engineering and cracking. Beginning with the fun-
damentals, the book will move on through sections on software reverse engi-
neering and cracking to end with an exploration of advanced offensive and
defensive techniques.

http://www.eff.org

x86 Software Reverse-
Engineering, Cracking, and

Counter- Measures

C H A P T E R

1

1

An effective reverse engineer or cracker is one who understands the systems
they are analyzing. Software is designed to run in a particular environment,
and if you don’t understand how that environment works, you will struggle
to understand the software.

This chapter explores the steps necessary to get started reverse engineering
an application. Decompilation is crucial to transforming an application from
machine code to something that can be read and understood by humans. To actu-
ally analyze the resulting code, it is also necessary to understand the architecture
of the computers that it is designed to run on.

Decompilation

Most programmers write using a higher- level programming language like
C/C++ or Java, which is designed to be human- readable. However, computers
are designed to run machine code, which represents instructions in binary.

Compilation is the process of converting a programming language to machine
code. This means decompilation would be the process of taking machine code
back to the original programming language, recovering the original source code.
When available, this is the easiest approach to reverse engineering because source
code is designed to be read and interpreted by a human. The majority of this

Decompilation and Architecture

2 Chapter 1 ■ Decompilation and Architecture

book will focus on the more typical case when decompilation is not possible.
But for the purposes of learning, it is important to understand that sometimes
you can decompile back to the source code, and when that is an option, you
should take it.

When Is Decompilation Useful?
For many programming languages, full decompilation is impossible. These
languages build code directly to machine code, and some information, such as
variable names, is lost in the process. While some advanced decompilers can
build pseudocode for these languages, the process isn’t perfect.

However, some programming languages use what’s called just- in- time (JIT)
compilation. When programs written in JIT languages are “built,” they are con-
verted from the source code into an intermediate language (IL), not machine code.
JIT compilers store a copy of the code in this IL until the program is run, at
which point the code is converted to machine code. Examples of JIT languages
include Java, Dalvik (Android), and .NET.

For example, Java is well- known for being largely platform- agnostic, and the
reason for this is its use of an IL (Java bytecode) and the Java Virtual Machine
(JVM). By distributing the program code as bytecode and compiling it only at
runtime, Java’s JVM translates from the Java IL to machine code specific to the
machine it’s running on. While this approach can negatively impact file size
and performance, it pays off in portability.

JIT compilation also makes reverse engineering these applications much
easier. These intermediate languages are similar enough to the original source
code that they can be decompiled or converted back into usable source
code. Source code is designed to be human- readable, making it far easier to
understand the application’s logic and identify software protections or other
embedded secrets.

Decompiling JIT Programming Languages
For JIT languages like .NET, several free decompilers are available. One widely
used .NET decompiler is JetBrains dotPeek, which is available from www.jet
brains.com/decompiler. Figure 1.1 shows an example of .NET code decompiled
in dotPeek.

As shown in the figure, the .NET code is easily readable after decompilation
because the intermediate language encodes a wealth of information as meta-
data, enabling more accurate reconstruction of the source code. Any sensitive
information or trade secrets contained within the code are easily accessible to
a reverse engineer.

https://www.jetbrains.com/decompiler
https://www.jetbrains.com/decompiler

 Chapter 1 ■ Decompilation and Architecture 3

Defending JIT Languages
Unlike true machine code programs, JIT- compiled programs can often be con-
verted to source code. Lowering the bar for reverse engineering the code makes
many of the x86 anti- reverse engineering defenses discussed in later chapters
unnecessary and overkill.

For decompilable languages, a commonly used defense against reverse engi-
neering is obfuscation. Figure 1.2 shows an example of a .NET application before
and after obfuscation.

The top half of the figure contains code before obfuscation occurs, where the
function and variable names and strings are easily readable. The information
in these variable names makes it easier for a reverse engineer to understand the
purpose of each function and how the application works as a whole.

In the bottom half of the image, we see the obfuscated version of the same
code. Now, function names, variable names, and strings are all mangled, mak-
ing it much harder to understand the purpose of the function shown, let alone
the application as a whole.

Another important security best practice is to avoid writing security or privacy-
critical code in JIT languages where reverse engineering is easy. Instead, write

Figure 1.1: JetBrains dotPeek .NET decompiler

4 Chapter 1 ■ Decompilation and Architecture

this code in an assembled language, such as C/C++, where reverse engineering
is significantly more difficult. This code can be included in DLLs that are linked
to the executable containing the nonsensitive code written in a JIT language.

Lab 1: Decompiling

This is the first hands- on lab for this book. Labs and all associated instructions
can be found in their corresponding folder here:

https://github.com/DazzleCatDuo/X86- SOFTWARE- REVERSE- ENGINEERING-

CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab Decompiling and follow the provided instructions.

Skills to Practice
Every lab in this book is designed to teach and provide hands- on experience
with certain skills. This lab’s skills to practice include the following:

 ■ Decompiling

 ■ Performing introductory reverse engineering

To learn these skills, you’ll be using JetBrains dotPeek to reverse engineer
and modify a .NET application.

Figure 1.2: Obfuscation in JetBrains dotPeek

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

 Chapter 1 ■ Decompilation and Architecture 5

Takeaways
Decompiling is a powerful and easy approach to understanding and modifying
a program. However, it doesn’t work on every program. While programs written
in languages such as C/C++ can be decompiled using tools such as IDA’s Hex-
Rays Decompiler or Ghidra, the result is often low- quality and difficult to use.

When developing applications that contain sensitive information or that you
don’t want modified, it’s better to use a language that isn’t easily decompiled.
For example, C/C++ is a better choice for sensitive functionality than a .NET
language such as C#.

Architecture

Decompilation is the easy approach to reverse engineering because it gets you back
to higher- level languages and logic structures. However, this easy path is not often
available. For languages that build to machine code, we need to go deeper and
understand how computer architectures and machine and assembly code work.

Computer Architecture
It’s generally thought that the average programmer doesn’t need an in- depth
understanding of how computers work. When writing a program in a proce-
dural language, the operating system handles all of the low- level operations. A
program is displayed as a process that has access to the processor, memory, and
file system whenever it needs them. Processes appear to have their own contig-
uous memory spaces, and files are just a sequence of bytes to read and write.

However, none of this is actually true, and your operating system has been
abstracting the truth from you (to make it easier to program). A solid under-
standing of how computer architecture actually works is essential for a reverse
engineer. Figure 1.3 shows the main components that make up a computer,
including the central processing unit, bridge, memory, and peripherals.

System
Bus

Memory
Bus

Bridge

I/O Bus

Memory

Peripheral

CPU

ALU

Registers

Control Unit

Peripheral Peripheral

Figure 1.3: Computer architecture

6 Chapter 1 ■ Decompilation and Architecture

The Central Processing Unit

The central processing unit (CPU) is where processing occurs on a computer.
Inside the CPU are the following components:

 ■ Arithmetic logic unit (ALU): The ALU performs mathematical operations
within the computer, such as addition and multiplication.

 ■ Registers: Registers perform temporary data storage and are used as
the primary inputs and outputs of x86 instructions. Registers provide
extremely fast access to a single word of data and are typically accessed
by name.

 ■ Control units: Control units execute code. This includes reading instruc-
tions and orchestrating the operations of other elements within a computer.

Bridges and Peripherals

The CPU is connected via a bus to a bridge. The purpose of the bridge is to con-
nect the CPU to other components of the system, including memory and the
I/O bus, which is where peripherals such as the keyboard, mouse, and speakers
are connected to the system. While information flows over a bus, the bridge is
responsible for controlling this traffic and ensuring that traffic flowing in over
one bus is routed out over the appropriate bus.

Peripherals, connected via the I/O bus, allow the computer to communicate
with the outside world. This includes sending and receiving data from the
graphics card, keyboard, mouse, speakers, and other systems.

Memory and Registers

As its name suggests, memory is where data is stored on the computer. Data is
stored as a linear series of bytes that are accessed via their address. This design
allows moderately fast access to data stored on the system.

When a program wants to access data in memory, the CPU sends a request
via a bus to the bridge, which forwards it to the memory, where the data at the
indicated address is accessed. The requested data then needs to retrace that
route and return to the CPU before it can be used by the program. In contrast,
a register is physically located within the CPU, making it far more accessible.

Registers are storage that lives inside of the CPU and, unlike memory, are
not a linear series of bytes. Registers are specifically named and have set sizes
associated with each.

Registers and memory both serve the same purpose: they store data. How-
ever, they have different specializations (quality versus quantity). Registers are
few in number and expensive, but they provide extremely fast access to data.
Memory is cheap and plentiful but offers slower access speeds.

 Chapter 1 ■ Decompilation and Architecture 7

The bulk of the data associated with a program, the code itself and its data,
will be stored in memory. While the program is running, small chunks of
data will be copied to the registers for processing.

Assembly
Computers run on binary, digital logic. Everything is either on (1) or off (0). This
includes programs running on a computer. All high- level languages are eventu-
ally converted into a series of bits called machine code. This machine code defines
the set of instructions that the computer executes to perform a desired function.

Introduction to Machine Code

Every programmer begins learning a language with a “hello world” program.
In x86, the machine code for “hello world” is as follows:

55 89 e5 83 e4 f0 83 ec 10 b8 b0 84 04 08 89 04 24 e8 1a ff ff ff b8 00
00 00 00 c9 c3 90

This machine code is written in hexadecimal for readability and compact-
ness, but its true value is a binary string of 1s and 0s. This binary string contains
instructions to flip transistors to calculate information, fetch data from memory,
send signals over the system buses, interact with the graphics card, and, finally,
print out the “hello world” text. If this string of characters seems a bit short to
accomplish all this, it’s because these instructions trigger the operating system
(in this example Linux) to help out.

Machine code controls the processor at the most detailed possible level. Some
of the functions that machine code performs include the following:

 ■ Moving data in and out of memory

 ■ Moving data to and out of registers

 ■ Controlling the system bus

 ■ Controlling the ALU, control unit, and other components

This low- level control means that applications written in machine code can
be incredibly powerful and efficient. However, while memorizing and inputting
various series of bits to perform certain tasks is pretty awesome, it is inefficient
and prone to error.

From Machine Code to Assembly

In machine code, a series of bits represents a particular action. For example,
0x81 or 10000001 is an instruction that adds two values together and stores the
result at a particular location.

8 Chapter 1 ■ Decompilation and Architecture

Assembly code is designed to be a human- readable version of machine code.
Instead of memorizing a binary or hexadecimal string like 0x81 or 10000001, a
programmer can use add. The add mnemonic is mapped to 0x81, so this short-
hand makes programming easier without losing any of the benefits of writing
in machine code.

Translating machine code to assembly code makes it much easier to under-
stand. For example, the previous “hello world” example code can be converted
into a series of comprehensible instructions.

MACHINE CODE ASSEMBLY

55 push ebp

89 e5 mov ebp,esp

83 e4 f0 and esp, 0xfffffff0

83 ec 10 sub esp, 0x10

b8 b0 84 04 08 mov eax

89 04 24 mov [esp], eax

e8 1a ff ff ff call 80482f4

b8 00 00 00 00 mov eax, 0x0

c9 leave

c3 ret

90 nop

If you understand machine code, writing directly in it can be fun, and there
are cases where it may make sense. However, the majority of the time, it is
inefficient and impractical. Writing in assembly provides the same benefits as
writing in machine code but is much more practical.

After code has been written in assembly, it can be translated to machine code
by an assembler in a process called assembling. A program already in machine
code can be disassembled into assembly code by a disassembler.

DEFINITION

Assemblers convert assembly code to machine code. Disassemblers convert machine
code to assembly.

Many programmers don’t write in machine code or assembly. Instead, they
use higher- level languages that abstract away more of the details. For example,
the following pseudocode is similar to many high- level procedural languages.

int x=1, y=2, z=x+y;

 Chapter 1 ■ Decompilation and Architecture 9

During the compiling process, these higher- level languages are converted
into assembly code similar to the following:

mov [ebp- 4], 0x1
mov [ebp- 8], 0x2
mov eax, [ebp- 8]
mov edx, [ebp- 4]
lea eax, [edx+1*eax]
mov [ebp- 0xc], eax

An assembler can then be used to convert the assembly code into the follow-
ing machine code that a computer can use:

c7 45 fc 01 00 00 00 c7 45 f8 02 00 00 00 8b 45 f8 8b 55 fc 8d 04 02
89 45 f4

Instruction Set Architectures and Microarchitectures

The word computer covers a wide range of systems. A smartwatch and a desktop
computer both work in similar ways. However, their internal components can
differ significantly.

An instruction set architecture (ISA) describes the ecosystems where programs
run. Some of the factors that an ISA defines include the following:

 ■ Registers: The ISA specifies whether a processor has a single register or
hundreds. It also defines the size of these registers, whether they contain
8 bits or 128 bits.

 ■ Addresses and data formats: The ISA specifies the format for addresses
used to access data in memory. It also defines how many bytes the system
can grab from memory at a time.

 ■ Machine instructions: Different ISAs may support different sets of instruc-
tions. The ISA defines whether addition, subtraction, equality, halt, and
other instructions are supported.

By defining the capabilities of the physical system, the ISA also indirectly
defines the assembly language. The ISA specifies which low- level instructions
are available and what those instructions do.

A microarchitecture describes how a particular ISA is implemented on a pro-
cessor. Figure 1.4 shows an example of the Intel Core 2 architecture.

Together, an ISA and microarchitecture define the computer architecture. The
existence of thousands of ISA and thousands of microarchitectures means that
there are thousands of computer architectures as well.

10 Chapter 1 ■ Decompilation and Architecture

DEFINITION

An instruction set architecture defines how registers, addresses, data formats, and
machine instructions work. Microarchitectures implement ISAs on a processor.
Together, an ISA and microarchitecture define a computer architecture.

RISC vs. CISC Computer Architectures

While thousands of computer architectures exist, they can be broadly divided
into two main categories. Reduced instruction set computing (RISC) architectures

128 Entry
ITLB

32 KB Instruction Cache
(8 way)

32 Byte Pre-Decode,
Fetch Buffer

Instruction
Fetch Unit

18 Entry
Instruction Queue

7+ Entry µop Buffer

Register Alias Table
and Allocator

96 Entry Reorder Buffer (ROB) Retirement Register File
(Program Visible State)

Shared Bus
Interface

Unit

Shared
L2 Cache
(16 way)

256 Entry
L2 DTLB

Micro-
code

Complex
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

ALU ALU
SSE

Shuffle
ALU

SSE
Shuffle
MUL

ALU
Branch

SSE
ALU

128 Bit
FMUL
FDIV

128 Bit
FADD

Store
Address

Store
Data

Load
Address

Memory Ordering Buffer
(MOB)

32 KB Dual Ported Data Cache
(8 way)

16 Entry
DTLB

Port 0 Port 1 Port 2Port 3 Port 4Port 5

Internal Results Bus Load
Store

128 Bit
128 Bit

4 µops

4 µops

4 µops

4 µops 1 µop 1 µop 1 µop

128 Bit

6 Instructions

4 µops

256
Bit

Intel Core 2 Architecture

32 Entry Reservation Station

Figure 1.4: Intel Core 2 architecture

 Chapter 1 ■ Decompilation and Architecture 11

define a small number of simpler instructions. In general, RISC architectures
are cheaper and easier to create, and the hardware is physically smaller and
consumes less power.

In contrast, a complex instruction set computing (CISC) architecture defines a
larger number of more powerful instructions. CISC processors are more expen-
sive and difficult to create and are typically larger and consume more power.

While CISC architectures may seem objectively worse than RISC ones, their
main benefit lies in the ease and efficiency of programming. For example, con-
sider a hypothetical example where a program wants to multiply a value by
5 in a RISC versus CISC system.

CISC RISC

mul [100], 5 load r0, 100

mov r1, r0

add r1, r0

add r1, r0

add r1, r0

add r1, r0

mov [100], r1

In this example, a CISC processor can perform the calculation in a single
instruction if it has a multiplication operation that can load a value from
memory, multiply it, and store the result at the same memory location. How-
ever, a RISC processor may lack a multiplication operator because it is a
complex operation. Instead, the RISC loads the value from memory, adds it
to itself four times, and stores the result in the same memory location across
seven steps.

RISC and CISC architectures both have their advantages, disadvantages, and
use cases. For example, a RISC operator may take 100 instructions to perform the
same operation that a CISC operator can perform in one. However, that single
CISC operation may take 100× as long to run or 100× the power.

Both RISC and CISC instruction sets are in common use today. Some exam-
ples of widely used RISC architectures include the following:

 ■ ARM (used by phones, tablets)

 ■ MIPS (used by embedded systems and networking equipment)

 ■ PowerPC (used by original Macs and Xbox360)

In this book, we focus on the x86 assembly language, which is a CISC
architecture. This architecture is in use on all modern PCs and servers and is
supported by all the main operating systems (Windows, Mac, Linux) and even

12 Chapter 1 ■ Decompilation and Architecture

some gaming systems, such as the Xbox One. Making it one of the most pow-
erful to learn for software cracking.

Summary

The machine code that actually runs on computers isn’t designed for humans to
read and understand. To be usable, it needs to be converted into a different form.

One option for this is decompilation, which produces a result that is similar
or identical to the original source code. However, decompilation is not always
possible.

For fully compiled languages, such as C/C++ , and many other languages,
it is necessary to disassemble a compiled executable and analyze it in assem-
bly. However, this requires a much deeper understanding of the computer’s
architecture and how it actually works than writing and reading code in a
higher- level language. Now that we know the role decompilation can play and
the need for disassembly, in the next few chapters we’ll look at how computers
work, so we can learn to disassemble like a pro.

C H A P T E R

13

2

Most software reverse engineering requires disassembling a compiled execut-
able and analyzing the result. This disassembly results in assembly code, not
a higher-level language.

While a few assembly languages exist, x86 is one of the most widely used.
This chapter introduces some of the key concepts of x86 assembly, providing a
foundation for later chapters.

Introduction to x86

Thousands of computer architectures exist. While they all work similarly, a com-
puter is a computer— but there are minor or major differences between each.

To study reverse engineering, we need to select an architecture to focus on.
In this book, we’ll be using x86, which was selected for a few different reasons:

 ■ Ubiquity: x86 is the most widely used assembly language, making it
widely applicable for reverse engineering.

 ■ Computer support: x86 applications can be built, run, and reverse
engineered on any desktop, laptop, or server.

 ■ Market share: x86 is the core of the major operating systems (Windows,
Linux, and macOS), so it is used in billions of systems.

x86 Assembly: Data, Modes,
Registers, and Memory Access

14 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access

The x86 architecture has been around for decades and has evolved signifi-
cantly over the years. It was first introduced in 1974 by Intel, and some of the
main milestones in the history of x86 include the following:

 ■ Intel 8080: 8-bit microprocessor, introduced in 1974

 ■ Intel 8086: 16-bit microprocessor, introduced in 1978

 ■ Intel 80386: 32-bit microprocessor, introduced in 1985

 ■ Intel Prescott, AMD Opteron, and Athlon 64: 64-bit microprocessor,
introduced in 2003/2004

Over its nearly 50-year history, the x86 architecture has regularly added
new features while maintaining backward compatibility. Even if a feature was
determined to be unused, it was never removed from the system. As a result,
programs written for the Intel 8086 processor released in 1978 can still run on
the latest x86 chips with no modifications.

This focus on backward compatibility has created an immense, complex,
and interesting architecture. The latest Intel Software Developer’s manual (www
.intel.com/content/www/us/en/developer/articles/technical/intel-sdm

.html) is more than 5,000 pages long and only begins to scratch the surface of
what this architecture can do. This book focuses on understanding the basics of
x86, which is all that is needed to read, write, and manipulate most x86 code.

As the x86 architecture has changed, the term x86 has become an umbrella
term for all of the architectures that have evolved from the Intel 8086 16-bit
architecture. This includes the Intel 80286 architecture, which contains both
16-bit and 32-bit architectures, and the Intel 80886 architecture, which adds a
64-bit architecture. The term x64 specifically refers to the 64-bit version of x86.

This book will show examples in 32-bit x86 architecture. All of the concepts
from 32-bit x86 translate exactly to x64. It is substantially easier to work on
examples in 32 bits versus 64 as you’re learning. After studying 32-bit x86
throughout this book, you will be immediately able to look at x64-bit assembly
and understand it. However, your eyeballs will be thanking you for not having
to look at 64 bits all the time, as even 32 bits are a bit painful to stare at. So, do
not let the examples being in 32-bit give you pause that this is outdated or that
you should focus on 64-bit out of the gate. Both of us learned 32-bit first, and
we’ve taught software cracking a lot and can confidently say that if you give
yourself the solid 32-bit foundation first, 64-bit becomes just another few reg-
ister names and longer values.

Assembly Syntax

Selecting x86 from the thousands of possible computer architectures is impor-
tant, but it isn’t enough. While an instruction set architecture (ISA) defines
factors such as the registers, data format, and machine instructions, it doesn’t
specify the syntax.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access 15

As long as an assembly language follows all of the rules for registers, address-
ing, etc., and defines the right set of instructions, it’s a valid x86 language. For
example, an x86 language must have a multiply operation. However, its mne-
monic could be mul, MUL, multiply, or any other variation across any language.

The syntax of an assembly language is entirely defined by the assembler. There
is no standard syntax for assembly language in general or for x86 assembly in
particular. As a result, there are hundreds of different variations.

However, there are two prevalent x86 syntax options that you will find most
x86 assembly tools use: AT&T syntax and Intel syntax. Under each of these main
branches are hundreds of assembler-specific variations.

While Intel and AT&T assembly are both x86, they look very different.
For example, consider a statement designed to move the memory at address
ebx+4*ecx+2020 into register eax.

This instruction looks very different in the Intel and AT&T syntaxes:

INTEL SYNTAX AT&T SYNTAX

mov eax, [ebx+4*ecx+2020] mov 0x7e4(%ebx,%ecx,4),%eax

In the Intel syntax, after the instruction mov comes the location where the result
will be stored. Memory access is indicated by square brackets, and the calculation
of the memory address [ebx+4*ecx+2020] is performed within these brackets.

AT&T syntax differs from Intel syntax in a few ways:

 ■ Ordering: The arguments are swapped, so the destination location is
listed second.

 ■ Registers: AT&T indicates registers using a percent sign (%), while Intel
does not.

 ■ Memory Access: AT&T uses parentheses to indicate memory access, while
Intel uses brackets.

 ■ Calculation: The calculation of the desired memory address looks very
different in AT&T and Intel syntax.

 ■ Instructions: While not shown here, AT&T often uses different, longer
instruction mnemonics than Intel.

For clarity and consistency, the Intel syntax was chosen for the examples in
this book. These are some of the reasons for selecting Intel over AT&T:

 ■ Intel support: Intel is the dominant processor developer, and they use
Intel syntax.

 ■ Tool usage: Most major reverse engineering tools, such as IDA, use the
Intel syntax.

 ■ Readability: Intel syntax is widely considered cleaner and easier to read
and write than AT&T syntax.

16 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access

Data Representation

Unlike humans, computers run on binary, so most reverse engineering tools
don’t display numbers in a base-10 system. To understand what an application
is doing, it’s necessary to understand the data it’s processing and how that data
may be represented.

Number System Bases
A base within a numbering system defines the number of symbols used to rep-
resent the value of a digit. Most humans perform math in base 10, which uses
the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

However, this is not the only option. It’s possible to use any base as long as
you have enough symbols to represent the values. For example, base 5 uses the
symbols 0–5, and base 8, also known as octal, uses the symbols 0–7.

 T I P The base that a number is written in may be indicated by a subscript. For
example, 1010 is written in base 10, while 102 is a binary (base 2) number.

For bases greater than 10, letters are also used as symbols. For example, base
11 would add the letter a and use the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and a.
Base 16, also known as hexadecimal, uses the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a,
b, c, d, e, and f.

 T I P In base 16 or hexadecimal, case is irrelevant, so a and A are both equivalent to
the value 10 in base 10.

In every base, we need the ability to represent values larger than the base
number. To do this, we use multiple digits. For example, counting in base 10
goes . . . 8, 9, 10, 11, . . ., 98, 99, 100, 101, In base 16, counting goes . . . 8, 9,
a, b, c, d, e, f, 10, 11, . . . 19, 1a, . . . 1f, 20,

Computers are binary systems and perform all of their data storage and
processing using 1s and 0s. However, these are inefficient and quickly become
cumbersome to write. For example, the value 201410 is equal to 111110111102.

While computers work with binary, values will often be displayed by tools
in hexadecimal or “hex” for readability. Values written in hex may be indicated
by a subscript (1d16), prefixed with 0x (0x1d), or suffixed with h (1dh).

One advantage of hexadecimal (base 16) is that hexadecimal is a power of 2.
This means that values can be converted easily between binary and hexadec-
imal via character substitution. Figure 2.1 shows how each hexadecimal symbol
maps to base 10 and base 2 (binary).

 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access 17

For example, consider the binary value 111110111102. Each hexadecimal digit
represents four binary digits, so this value can be broken up into three chunks
starting from the right: 111, 1101, and 1110. From the figure, we see that these
chunks are equal to the hex digits 7, d, and e, and the entire value can be rep-
resented as 0x7de.

111110111102 Binary number

111 1101 11102 Broken up into 4-bit nibbles from right to left

7 d e Each nibble is translated to hex

0x7de The resulting hex value

While these conversions can be performed by hand, it’s often faster and more
accurate to use a tool. Figure 2.2 shows an example of performing base conver-
sions using the Windows calculator.

Bits, Bytes, and Words
Bits are the base unit used by computers. However, they are too small to provide
much utility. Instead of accessing and processing individual bits, computers
use bytes as their smallest unit of memory. A byte contains 8 bits on all modern
systems.

While bytes are larger than bits, they’re also too small for many operations.
Computers are designed to optimally access a certain number of bytes at a time.
This number of bytes is referred to as a word, is usually a power of 2, and can
vary across computers. For example, microcontrollers have small word sizes,
often using words containing 1 or 2 bytes (8 or 16 bits). On general-purpose
computers, the word size is usually 4 or 8 bytes (32 or 64 bits).

Bits, bytes, and words are the most important terms to know when working
with memory, but they aren’t the only ones. A complete list of common terms
is as follows:

 ■ Bit: Binary digit, a 0 or 1

 ■ Byte: 8 bits

Figure 2.1: Hexadecimal

18 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access

 ■ Nibble: 4 bits

 ■ Double-byte: 16 bits

 ■ Quad-byte: 32 bits

 ■ Word: Architecture-dependent, some number of bytes

 ■ Halfword: Half a word

 ■ Doubleword (DWORD): Two words

 ■ Quadword (QWORD): Four words

 ■ Octoword, double quadword (DQWORD): Eight words

This book focuses on 32-bit architecture. In a traditional 32-bit architecture,
that would dictate that a word is 32 bits. But this is a quirk of the x86 architecture.
Because x86 has maintained its backward compatibility with the original 16-bit
architecture, a word on x86 is 16 bits, and a double word is 32 bits.

 T I P In 32-bit x86, a byte is 8 bits, and a doubleword is 32 bits.

Figure 2.2: Base conversions in the Windows calculator

 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access 19

Working with Binary Values
Reverse engineering commonly involves working with large binary numbers
that span multiple different bytes. When working with these numbers, under-
standing concepts such as zero-extension, bit and byte significance, and endian-
ness is necessary to correctly interpret the number that a binary string represents.

Zero-Extension and Readability

Binary values are commonly zero-padded or zero-extended to the word size of the
architecture. On a 32-bit architecture, this means adding 0s to the left of the value
until it is 32 bits long. For example, the value 110012 would be zero-padded to
00000000 00000000 00000000 000110012.

Note that the bits are also broken into groups of four or eight to improve
readability. This is just like commas are sometimes added every three digits in
base 10 (i.e., 1,000 instead of 1000). When values are written in hexadecimal,
they are also grouped by bytes with two characters per byte. For example, the
value 4D216 (equivalent to 123410) can be written as 0416 D216.

Bit and Byte Significance

The bits and bytes within a binary number may be labeled based on their relative
weight in a number. Figure 2.3 illustrates some of these common labels.

In the value 00000000 00000000 00000000 000110012, the least significant bit
(LSB) is the one at the far right, which has a value of 1. The most significant bit
(MSB) is at the far left and has a value of 0. When converting from binary to base
10, the MSB will be multiplied by 231, while the LSB will be multiplied by 20.

In addition to MSBs and LSB, there are also the concepts of the least and most
significant bytes. In the value 00000000 00000000 00000000 000110012, the least
significant byte has a value of 000110012, while the most significant byte has a
value of 000000002.

Bits and bytes may also be labeled based on their proximity to the ends of the
value. For example, bits and bytes near the LSB are said to be low-order, while
bits and bytes near the MSB are high-order.

Figure 2.3: Bit and byte significance labels

20 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access

Endianness

In memory, data is stored in bytes. However, many data types use multiple
bytes. For example, an int is 32 bits or 4 bytes.

Endianness describes the order that these bytes are stored in memory. In a little-
endian system, the least significant byte is stored first (at the lowest address). In a
big-endian system, the most significant byte is stored first (at the lowest address).

For example, consider the value 133710, which is 0000 0000 0000 0000 0000
0101 0011 10012 in binary or 0x00000539 in hex. Figure 2.4 shows how these
values would be stored in memory.

DEFINITION

In a little-endian system, the least significant byte is located at the smallest address. In a
big-endian system, the most significant byte is at the smallest address.

Regardless of the endianness of the system, the address associated with a
variable is the lowest address used or base address. In both a little and big-endian
system, this would be address 1828 in this example.

This book focuses on the x86 architecture, which is little endian. As a result,
the least significant byte of a chunk of data will be located at offset 0 from the
base address. You’ll notice that this looks “backwards” to humans, as we read
and write in big endian.

 T I P x86 is a little-endian architecture, so the lowest address contains the least
significant bit.

Registers

Registers provide the processor with high-speed access to data. Since registers
are physically located within the CPU, they have much lower latency than
memory, where requests must traverse buses and bridges to access data.

In a 32-bit architecture, a register contains 32-bits of data and can be treated
like a variable in a program. Each register has a unique name, and the data
within a register can be modified based on computations or loading new values
from memory.

Figure 2.4: Endianness

 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access 21

The main limitation of registers is that they are limited in number and must
be shared by the whole program. If a program runs out of registers, it needs to
start storing information in memory, which negatively impacts performance.
With a limited number of registers, the normal execution cycle is as follows:

 ■ Fetch data from memory and store it in registers

 ■ Work with data

 ■ Save data back to memory

 ■ Repeat

Registers in x86
As we’ve mentioned before in the architecture overview, registers are special
names and places in the CPU that allow for very fast operations. All registers
can be thought of in two distinct categories.

 ■ General-purpose registers (GPRs): Used for general storing data, addresses,
etc., and are directly manipulable

 ■ Special-purpose registers (SPRs): Used to store the program state

The x86 architecture defines numerous registers, which are shown in Figure 2.5.
However, many of those are reserved for use by the CPU itself, making it necessary
to know only a subset of them.

x86 General-Purpose Registers

GPRs perform most of the heavy lifting within an application, storing values
fetched from memory, doing data manipulations, and storing the results of cal-
culations. The following GPRs are the most significant ones in x86, and each

Figure 2.5 x86 registers
Source: Liam McSherry/ wikimedia Commons /CC BY-SA 3.0.

22 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access

can store 32 bits of data. Each accumulator has a role that it is traditionally used
for and that it is named after; however, GPRs can be used for any purpose, and
you can put a counter in any register, not just the ecx register.

eax

eax is the “accumulator” register. Its name comes from the fact that it is com-
monly used to hold the result of an arithmetic operation. For example, a program
may perform the calculation eax += ebx.

ebx

ebx is the “base” register. It is commonly used to hold the base address of
the chunk of memory used to store a variable. For example, the expression
[ebx + 5] can be used to access the fifth element of an array.

ecx

ecx is the “counter” register and is traditionally used to count. For example,
ecx might be used to track the current iteration of a loop. In the command for
(i=0; i<10; i++), the variable i is likely to be stored in the ecx register.

edx

edx is the “data” register. Its name comes from the fact that it is commonly used
to hold data. For example, an application may include the instruction sub edx, 7.

esi

esi is the “source index” register. It is traditionally used to store an index into
a source array. For example, in the command array[i] = array[k], the value
of k would likely be stored in esi.

edi

edi is the “destination index” register. It is used to store an index into a desti-
nation array. For example, in the command array[i] = array[k], the value of
i would likely be stored in edi.

ebp

ebp is the “base pointer” register. Its purpose is to store the address of the base
of the current stack frame. The concepts of the program stack and stack frames
will be explored in later chapters.

 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access 23

esp

esp is the “stack pointer” register. It stores the address at the top of the current
stack frame.

Special-Purpose Registers

SPRs are designed for specific tasks and are not allowed to be directly modified.
For example, the instruction mov eip, 1, which uses an SPR, will not assemble,
while mov eax, 1, which uses a GPR, will.

eip

eip is the “instruction pointer” register. It stores the address of the next instruction
to execute.

eflags

eflags is the “flags” register. It stores “flags,” which have a value of true or
false and hold information about the system state and the results of previously
executed instructions.

 T I P GPRs are both readable and writable, but SPRs are read-only.

Working with Registers
In assembly, GPRs can be treated just like variables and accessed by name.
For example, the instruction mov eax, 1 stores the value 1 in eax, while
add eax, ebx adds the contents of eax to ebx.

Note that all of these register names begin with the letter e. This is because
these 32-bit registers were “extended” from the original 16-bit registers.

The lower half of a register’s contents can be accessed by removing this e from
the name. For example, the register ax contains the low 16 bits of the eax register.

If a register’s name ends with x (eax, ebx, ecx, and edx), this 16-bit register
can be further divided into two 8-bit registers, which are identified by l and h.
al contains the low-order 8 bits of the register ax, while ah contains the high-
order 8 bits. This is illustrated in Figure 2.6, where eax=0x01234567, ax=0x4567,
ah=0x45, and al=0x67.

24 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access

64-Bit Registers

In 64-bit x86, all of the instructions and behavior are the same as 32-bit x86.
However, 64-bit architectures have more and larger registers.

Figure 2.7 shows the commonly used registers in 64-bit x86. In addition to
the 32-bit registers described differently, 64-bit architectures include eight more
registers labeled r8-r15.

All 64-bit registers are also larger than their 32-bit counterparts. For the reg-
isters that exist in 32-bit x86, such as eax, the full 64-bit counterpart replaces
the e with an r, which makes the register rax. The lower 32 bits of the register
are then accessible using the 32-bit name, and the uses of names such as ax, al,
and ah remain unchanged.

For new registers like r8, 64-bit x86 allows access to the lower 32, 16, and 8
bits. These are labeled as d (r8d), w (r8w), and b (r8b) respectively, as shown
in Figure 2.8.

Memory Access

A 32-bit (or 64-bit) system has only a limited number of registers available. When
ignoring the SPRs and GPRs used to track the stack (esp and ebp), you’re left
with only six registers available for general computation (eax, ebx, ecx, edx, esi,
and edi). This isn’t enough to do much, which is why a program also needs to
be able to read and write data to memory.

In Intel x86 assembly syntax, memory access is indicated using [] notation.
For example, the data stored at address 0x12345678 can be accessed using
[0x12345678]. Memory addresses can also be stored in registers, such as the
instruction [eax].

Specifying Data Lengths
When accessing data from memory, it’s necessary to not only know the address
where the data is located but also how much memory to access. For example,
the instruction [0x12345678] doesn’t specify whether the program wants a byte,
a word, a double word, or more.

Figure 2.6: Pieces of the eax register

 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access 25

In some cases, the length of the data being accessed can be inferred from
context. For example, in the instruction mov eax, [0x12345678], the data being
fetched from memory will be stored in eax. Since eax is a 32-bit register, the
program must be requesting 32 bits of data.

Figure 2.7: Common x64 registers
Source: Bobmon / Wikimedia Commons / CC BY-SA 4.0.

26 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access

This is not always the case. For example, consider the command
mov [0x12345678], 1, which places a value of 1 at a particular address in
memory. However, this instruction doesn’t specify the length of the value being
set. Should 1 be considered a byte (0000 0001), a word (0000 0000 0000 0001),
or a doubleword (0000 0000 0000 0000 0000 0000 0000 0001)? Leading zeros
are often trimmed from values for clarity and compactness, so any of these are
potentially valid interpretations of moving a 1.

 T I P Traditionally, 32-bit x86 should have 32-bit words. However, backward compat-
ibility with 16-bit x86 architectures means that words are 16 bits and a doubleword
(dword) is 32 bits.

When the size of a memory access is not implied, it must be explicitly spec-
ified within the instruction. For example, the instruction byte [100] accesses
the byte at address 100, word[ebx] accesses the word pointed to by ebx, and
dword[ax] accesses the doubleword pointed to by ax. Figure 2.9 shows the
difference between the following three instructions.

mov byte[100], 1
mov word[100], 1
mov dword[100], 1

Figure 2.8: Pieces of the r8 register

Figure 2.9: Comparing differently sized mov instructions

 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access 27

Addressing Modes

In Intel x86 syntax, memory addresses are indicated by square brackets. For
example, [0x1234] indicates that the program should access the memory located
at address 0x1234.

However, memory addressing is not limited to specifying addresses with
immediate values like 0x1234. The x86 language supports a few different addressing
modes. Different addressing modes are used to access different types of variables.

Absolute Addressing
Absolute addressing uses a constant value to specify an address. This constant value
can be specified in any base, such as [1] or [0x1234]. It also can be the result
of an arithmetic operation, [0x1337 + 0777], or indicated by a label [label].

Example: Global Variables

In C/C++, global variables are intended to be accessible from anywhere within
a program. To achieve this, they are stored in memory at a fixed address and do
not move as the application moves through various stack frames.

This means that, in assembly, the exact address of the variable will always be
known. Therefore, global variables will be accessed using absolute addressing
such as mov eax, [0x1000].

Indirect Addressing
Indirect addressing uses registers to specify the address. This includes both
16-bit GPRs, such as [ax], and 32-bit GPRs, such as [eax]. However, 8-bit GPRs
(al, bh, etc.) and SPRs can’t be used for addressing.

Example: Pointers

Many programming languages use the concept of pointers, some more directly
and others hidden behind the scenes. Direct usages and manipulation of pointers
are an example of a C/C++ data type that commonly uses indirect addressing.
A C program may contain the line int x = 1; int* p = &x; where the pointer
p is set to point to x. If you aren’t familiar with C, don’t worry; just know that
p holds the address of where x is in memory.

However, the value of p may be changed to point to other things, so the
address of its target is not fixed. To access the value indicated by p in assembly,

28 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access

p will first be loaded into a register, and then this register will be used to find
the desired value. This is shown in the following x86 instructions:

mov ebx, [p] ; Load the address indicated by p into ebx
mov eax, [ebx] ; Move the value indicated by p into eax

Base + Displacement Addressing
Some variables, such as arrays, are stored in memory using a base address
and offsets. Individual values within the array can be accessed using the base
address and a displacement.

Base + displacement addressing or based addressing uses the combination of a
register value and a displacement to indicate an address. This type of mode is
often used for access into arrays. So in a language where you might have had
myList[8], you’re accessing eight elements from the base of myList. In assembly,
for example, [eax + 8] indicates the eight bytes from the base address of the
array, which is stored in eax.

Indexed Addressing
Base + displacement addressing works well if the elements in an array are
always a single byte long. For arrays with larger elements, the offset must be
computed by hand, which is tedious and prone to error.

In these cases, indexed addressing can be a better choice. Indexed addressing
uses an index register, a scale factor, and a displacement to specify the address.
The scale factor must always be 1, 2, 4, or 8.

Example: Arrays

Let’s define an array of integers, int x[100];, which declares an array contain-
ing 100 ints. In memory, each value in the array is stored at a particular offset
from the base address. This offset is determined by the size of the values in the
array, such as a 32-bit or 4-byte int.

Assume that the int array was created at offset 0x1000. The following
instruction would move the nth element of the array into eax if n is stored in ebx:

mov eax, [ebx * 4 + 0x1000]

Based-Index Addressing
Based-index addressing combines elements of indexed addressing and base +
displacement addressing. It uses a base register, an index register, a scale factor
(1, 2, 4, or 8), and a displacement for the address.

 Chapter 2 ■ x86 Assembly: Data, Modes, Registers, and Memory Access 29

For example, consider [ebx + edi * 4 + 0x1000]. This address has a base
stored in ebx, an index stored in edi, and a displacement of 0x1000.

Example: Structs

Based-index addressing is ideal for accessing elements of nested data types. For
example, consider the C command struct { int i; short a[4]; } s;. This
creates a struct containing multiple fields, including an array.

Each element within this struct is located at a particular offset, which means
that the array a has a certain displacement or base address. However, the elements
contained within a are also located at different offsets from this base address.

Assume that base address of the struct s is stored in ebx, and the array a is
stored 4 bytes from this base address. The following instruction will access the
nth element within a if n is stored in ecx:

mov eax, [ebx + 2 * ecx + 4]

Don’t get too tripped up if the more advanced addressing is hard to grasp.
Your operating system has been hiding memory from you, so it’s natural that
thinking about how arrays are stored in memory is new territory. These address-
ing modes need to be introduced as theory first, but they can be hard to grasp
before you start to see them in use later in real assembly code. And don’t worry,
you will.

Summary

x86 is a commonly used assembly language. Understanding how it works is
essential to becoming a successful software reverse engineer and cracker.

This chapter explored some of the key concepts of x86 assembly. These include
data representation, assembly syntax, and the use of registers and memory
addresses for data access and storage.

C H A P T E R

31

3

Cracking and reverse engineering involve reading, writing, and modifying
assembly code. In this book, the focus is on the x86 assembly language.

It isn’t necessary to understand every detail of x86 assembly to be a reverse
engineer or even to write programs in assembly. This chapter explores the fun-
damentals of x86 and the main instructions that make up more than 90 percent
of assembly code for software.

x86 Instruction Format

Mnemonics are used in x86 assembly to make human-readable assembly code.
Each of these mnemonic instructions is assembled into the machine code that
controls the processor. So, the processor has no notion of mnemonics, only the
machine code. For example, the mnemonic add assembles to the machine code
value 0x04.

In x86, instructions are written in a particular format. An example of a simple
x86 instruction is:

add eax, 1

In this instruction, add is the mnemonic used to instruct the processor on
what to do. This instruction also includes a couple of operands that indicate

x86 Assembly: Instructions

32 Chapter 3 ■ x86 Assembly: Instructions

the data to be used in this operation. In this case, the operands are the register
eax and the value 1. An x86 instruction under normal conditions can have up
to three operands if it has any at all. There are special extensions to the lan-
guage that allow extensions up to four operations (VEX prefix), but we won’t
be delving into this corner of assembly.

The operands to x86 instructions can be registers, immediates, or memory
addresses. Registers are usually the general-purpose registers (GPRs), and
memory locations are specified by address. Immediates are numbers or constants
like 12345.

While an x86 instruction can include any of these, it can contain a maximum
of one memory location. For example, the instructions add eax, ebx and
add eax, [0x12345678] are valid because they access two registers and a
register and a memory location, respectively. However, the instruction
add [0x12345678], [0x87654321] is invalid because it uses two memory
addresses at once. This is because the processor pipeline is a delicate design
that can perform only one memory fetch per instruction.

x86 Instructions

The x86 assembly language includes hundreds of different instructions. Some
of the most commonly used include the following:

 ■ Arithmetic

 ■ add

 ■ sub

 ■ mul

 ■ inc

 ■ dec

 ■ Bit Manipulation

 ■ and

 ■ or

 ■ xor

 ■ not

 ■ Stack

 ■ call

 ■ return

 ■ push

 ■ pop

 Chapter 3 ■ x86 Assembly: Instructions 33

 ■ Data movement:

 ■ mov

 ■ Execution flow

 ■ jmp

 ■ Conditional jumps

 ■ Comparison

 ■ test

 ■ cmp

 ■ Other

 ■ lea

 ■ nop

While this may seem like a lot, consider the common operators used in program-
ming languages (+, −, *, /, %, &&, ||, &, |, ̂ , !, ~, <, >, >=, <=, ==, ., −>, etc.) and the
main keywords (if, else, switch, while, do, case, break, continue, for, etc.).
It takes a lot of capability to achieve these behaviors in assembly.

Truthfully, no one knows all of the x86 instructions or has a need to (unless
they really want to impress their friends). A complete list of x86 instructions
can be found at http://ref.x86asm.net/coder32.html, and the details of any
instruction can be looked up when needed.

However, a clear understanding of how the most common x86 assembly works
is essential to success as a reverse engineer. If you understand this important
subset of x86 instructions, you will be able to read and understand most x86
programs.

mov
As its name suggests, the mov instruction is designed to move data from one
location to another. This includes copying data between registers and memory
locations or placing an immediate at a particular location. Note that despite its
name being move, it copies data; it does not move it (meaning it is not removed
from source; it is rather copied from source to destination).

The syntax of the mov instruction is mov destination, source. For example,
the command mov eax, 5 places the value 5 in the register eax. Similarly, the
instruction mov eax, [1] moves the value at address 0x1 into eax.

When working with mov and similar instructions, it is important to recall that
the names of the variables used impact the length of the value being moved.
For example, the instruction mov eax, [0x100] moves a 32-bit value into eax,
while the instruction mov dx, [0x100] moves a 16-bit value into dx.

http://ref.x86asm.net/coder32.html

34 Chapter 3 ■ x86 Assembly: Instructions

 N OT E An x86 operand can use a register value to indicate a memory address. For
example, the instruction mov [eax], ebx moves the value stored in ebx into the
memory location whose address is stored in eax. So, if eax has a value of 0x7777,
memory address 0x7777 is where the value of ebx is stored.

mov is an extremely versatile operator and a great example of the power of
mnemonics versus machine code. mov can be used in a variety of different ways
as shown in Figure 3.1, and each of those translates to a different machine code
depending which two operands are used. However, all of these different vari-
ations are represented as mov at the mnemonic level. It’s the assembler’s job to
translate the mnemonic to the correct machine code.

Figure 3.1: mov instructions

 Chapter 3 ■ x86 Assembly: Instructions 35

Hands-on Example

How would the following pseudocode be written in assembly? Assume that
variable i is located at address 100, and j is located at address 200.

int i = 42, j = i;

This single line of pseudocode could be assembled into three x86 instructions.

mov [100], 42
mov eax, [100]
mov [200], eax

Note that the register eax is used to store the value being copied from memory
address 100 to memory address 200. The reason for this is that a single instruction
can’t perform two different memory accesses. A register, such as eax, must be
used for temporary storage.

When looking at the code, it might seem like it would make more sense to load
address 200 with the immediate 42 rather than taking two operations to load it
from memory address 100. However, a compiler won’t and shouldn’t do this.

The reason for this is the potential for multithreaded applications. If another
thread is running on the system, the value at location 100 may have been updated
between the step assigning it a value of 42 and the step assigning its value to
location 200. Copying the value from location 100 rather than using an immediate
helps to ensure that the variable j at location 200 receives the most up-to-date
version of the value stored in i.

inc, dec
The inc and dec x86 instructions increment or decrement the indicated value
by 1, respectively. This is the equivalent of the instructions i++ or i-- in tradi-
tional code.

These instructions take a single operand, which can be a register or memory
address. For example, the instruction inc eax increases the value stored in eax
by 1, while dec [0x12345678] decreases the value stored at memory address
0x12345678 by 1.

add, sub
The add and sub instructions add or subtract value from a specific value, respec-
tively. These instructions accept two operands. For example, an add instruction
would be specified as add destination, value.

The destination in an add instruction can be a register or memory location,
while the value can be a register, memory location, or immediate. The operation
takes destination + value and stores the result in destination. This means

36 Chapter 3 ■ x86 Assembly: Instructions

destination’s incoming value is relevant to the mathematical expression but
is overwritten to save the result. Note that the size of the two operands must be
the same. For example, add eax, ebx is a valid instruction (32-bit plus 32-bit),
while sub eax, bx is not (32-bit minus 16-bit).

When using add and sub, it is important to consider the sizes of the
values being used. For example, the instruction sub ecx, [100] implies a
32-bit value by its use of ecx as the destination. However, the instruction
add dword [edx], 100 requires the dword size specifier because the 32-bit value
edx indicates that the memory address is 32 bits long but doesn’t specify the
size of the data being modified at that location.

mul
The mul operation performs unsigned integer multiplication. However, it is a
bit unusual because it takes only a single operand but implicitly uses two addi-
tional registers. The syntax of a mul operation is mul operand, where operand
can be a register or memory address. The operation multiplies the value stored
in eax with the value specified in the operand.

The result of a mul operation is stored in edx:eax with edx containing the
high 32 bits of the result. The values stored in edx and eax are always modified
by mul even if the result is less than 32 bits long and edx is not needed. mul is
interesting because you can get a 64-bit output (edx:eax) on 32-bit math.

An example of the mul operation is mul eax, which squares the 32-bit
value stored in eax. When operand contains a memory address, the length of
the value can vary. For example, mul dword [0x555] multiplies eax by a 32-bit
value stored at 0x555, while mul byte [0x123] uses an 8-bit value stored at
0x123 in the multiplication.

div
The div operation performs unsigned division. Like mul, it takes a single operand
and modifies the eax and edx registers implicitly. In this case, the quotient is
stored in eax, and the remainder is stored in edx. For those in need of a quick
math lingo reminder (don’t be embarrassed, math buzzwords hurt my brain
too) 5 divided by 2 would have a quotient of 2, and a remainder of 1.

The div operation uses both eax and edx for its input and formats them in the
same way as mul’s output with the high 32 bits contained within edx. As with
mul, the output always modifies eax and edx even if edx is not needed (i.e., the
remainder is zero).

An example of the div operation is div eax. This is equivalent to the calcu-
lation eax, edx = edx:eax / eax . In this case, the operand is a 32-bit register,
but memory addresses can indicate and use divisors of different lengths.

 Chapter 3 ■ x86 Assembly: Instructions 37

Hands-on Example

Assume that you wanted to calculate the remainder of 123/4. This can be accom-
plished via four assembly instructions.

mov eax, 123 ; Load the lower 32 bits of the dividend into eax
mov edx, 0 ; Clear the edx register, which holds the higher 32 bits of

the dividend
mov ecx, 4 ; Load the divisor into ecx since div can't take an

immediate operand
div ecx ; Perform the division

At the end of this process, the quotient is stored in eax, and the remainder
is stored in edx.

and, or, xor
The x86 standard includes support for a few different Boolean operations. The
and, or, and xor operations all take two operands. Truth tables for these three
operations are shown here. The input options are shown on the top and left
edges of the table. For example, to find 1 AND 1, we find the intersection of the
1 column and 1 row, and the result is a 1. So, 1 AND 1 is 1.

AND 1 0 OR 1 0 XOR 1 0

1 1 0 1 1 1 1 0 1

0 0 0 0 1 0 0 1 0

All three operations use the same syntax: mnemonic destination, source.
For example, the and operation syntax is and destination, source. Like the
add operation, the destination must be a register or memory address, while
the source can be a register, memory address, or immediate. And also like the
add operation, the destination is used in the calculation but also overwritten
to save the result.

Boolean operations can be used for a variety of different purposes. For example,
the operation or eax, 0xffffffff is a quick way to set the value of eax to all
1s. The operation and dword [0xdeadbeef], 0x1 masks off everything but the
low bit of the 32-bit value at location 0xdeadbeef. The operation xor eax, eax
is a common method for clearing the value of eax.

not
The not operation is a Boolean operation that computes the one’s complement
of a value. For those not familiar with the term one’s complement, you can essen-
tially think of it as taking all 0s and making them 1s and vice versa. It inverts
the number. It takes a single operand with the syntax not operand.

38 Chapter 3 ■ x86 Assembly: Instructions

The not operator can work on values of various lengths. For example, the
operation not ch computes the one’s complement of the 8-bit register ch. The
command not dword [2020] computes the one’s complement of a 32-bit value
located at address 2020.

shr, shl
shr and shl are two of the shift operations available in x86, with shr being shift
right, and shl being shift left. They take two operands: the location of the value
to be shifted and the amount by which they should be shifted. An example shift
operation is shr register, immediate.

shr and shl are logical shift operators. This means that when shifting the
value by the indicated immediate value, they will zero-extend the value to the
left or right. So, any new digits that appear as a result of the shift will be auto-
matically 0.

For example, the operation shr al, 3 will shift the value stored in al to the
right by three bits. If al contains the value 00010000, then the resulting value
will be 00000010.

 T I P Zero-extending a right-shifted value will fill empty bits with zeros and is called a
logical shift. Sign-extending a right-shifted value will fill empty bits with the same value
as the most significant bit and is called an arithmetic shift.

sar, sal
sar and sal are arithmetic shift operators. Their syntax is identical to that of the
logical shifts, but they differ in implementation. sar does an arithmetic shift to
the right and sal an arithmetic shift left.

When performing a left shift, sal operates the same as shl, zero-extending the
value. For example, the instructions shl al, 3 and sal al, 3 with the value
00000100 stored in al will both produce the value 00100000. All new positions
that were opened in the number were filled with 0s.

However, a sar operation will sign-extend the value, while shl will zero-extend
it. A sign-extend means it will replicate whatever bit was the most significant.
For example, if al contains the value 10000000, then the command shr al, 3
will produce the value 00010000, as shown here:

10000000 Initial value
01000000 1- bit shift
00100000 2- bit shift
00010000 3- bit shift

However, the instruction sar al, 3 will result in 11110000. Because the most
significant bit is a 1, a 1 is replicated in all new positions.

 Chapter 3 ■ x86 Assembly: Instructions 39

nop
The nop operator stands for “no operation.” It is a one-byte operator (0x90) that
does nothing.

While nop technically does nothing, it is used for a variety of legitimate pur-
poses, including the following:

 ■ Timing

 ■ Memory alignment

 ■ Hazard prevention

 ■ Branch delay slot (RISC architectures)

 ■ A placeholder to be replaced later by a future patch

And in the security world it is used for the following:

 ■ Hacking (nop sleds)

 ■ Cracking (nop outs)

lea
The lea operator stands for load effective address. It takes two operators, including
the destination (a register or memory address) and the source, which must be
a memory address. The lea instruction computes the address of the indicated
source operand and places it in the destination. For those familiar with pointers,
it is similar to the & operator.

While lea is designed to work with addresses, it is also commonly
used for simple mathematical operations. For example, the operation
lea eax, [ebx + ecx + 5] asks what address ebx+ecx+5 points to and then
stores that into eax. This essentially computes ebx + ecx + 5 and stores the
result in eax. A more standard use of the lea operator, lea eax, [100], would
place the value 100 in eax.

While on the surface this can look a little silly or pointless, lea is a useful
operator because it makes working with arrays in assembly more efficient. In
arrays, values are stored at a particular offset from a base address. (Remember
our base + displacement addressing modes?) With lea, it is possible to effi-
ciently calculate the address of a particular element in an array. For example,
assume that eax contains the base address of a character array. In that case,
the instruction lea ebx, [eax + 2] would place the address of the second
element in the array in ebx. This single instruction is more efficient than the
series of instructions mov ebx, eax and add ebx, 2, which accomplishes the
same result.

40 Chapter 3 ■ x86 Assembly: Instructions

Hands-on Example

How would the following pseudocode be written in assembly? Assume that i
is at address 100, j is at address 200, and k is at address 300.

int i = 7;
char j = 5;
int k = i + j;

This pseudocode would be assembled into the following x86 instructions:

mov dword [100], 7 ; set i
mov byte [200], 5 ; set j

mov eax, [100] ; load i into eax
xor ebx, ebx ; zero ebx
mov bl, [200] ; load j into ebx

add eax, ebx ; add ebx to eax, store in eax

mov [300], eax ; save result to k

In this example, note the use of both ebx and bl. The value that was to be
stored in this register fits in bl. However, when performing the add operation,
the entire ebx register is used. This is because of class promotion, if you add
a 1 byte value to a 4 byte value the 1 byte values promoted to 4 bytes, and the
additional bytes must be 0. So in this case what was 0x05 in bl, is promoted to
0x00000005 in ebx. The XOR operation to clear ebx was necessary to ensure that
the previous value stored in the ebx register was completely purged and did
not affect the result of the add.

Putting It All Together

So far, many of the examples have been simple operations using only a couple
of x86 operators. Now, try to write assembly code for the following pseudocode,
assuming that i is at address 100, j is at address 200, and k is at address 300.

int i = 7;
char j = 5;
int k = i * i + j * j;

This pseudocode assembles into the following x86 instructions:

mov dword [100], 7 ; set i
mov byte [200], 5 ; set j

mov ecx, [100] ; load i into ecx
xor ebx, ebx ; zero ebx

 Chapter 3 ■ x86 Assembly: Instructions 41

mov bl, [200] ; load j into ebx

mov eax, ecx ; copy ecx into eax (eax = ecx = i)
mul ecx ; multiply ecx by eax, store result in eax
mov ecx, eax ; save result back to ecx to free up eax

mov eax, ebx ; copy ebx into eax (eax = ebx = j)
mul ebx ; multiply ebx by eax, store result in eax

add eax, ecx ; add ecx to eax, store result in eax
mov [300], eax ; save final value to k

Common x86 Instruction Mistakes

x86 is a powerful assembly language, and most instructions follow a consistent
set of rules. However, it does have its inconsistencies that can trip people up.

Here are some examples of common mistakes that people make when trying
to write their own x86 that result in code that will not assemble:

 ■ mov [bl] , 0xf: x86 supports indirect addressing using 16 and 32-bit
GPRs. Since bl is only 8 bits long, it can’t be used for addressing.

 ■ mov [0xabcd], 1337: This instruction doesn’t specify the size of the value
to be moved since 1337 may be recorded as 0x0539 or 0x00000539.

 ■ mov word [0xabcd], eax: This instruction has an incorrect memory size
specified since a word is 16 bits but eax holds 32 bits.

 ■ mov byte [1], byte [2]: Two memory locations can’t be used in the
same instruction.

 ■ mov sl, al: While eax has an al register, no sl register exists.

 ■ mov 0x1234, eax: The value 0x1234 is an immediate, not a memory
address, and can’t be the destination of a command.

 ■ mov eax, dx: This instruction has a size mismatch between the 16-bit
source dx and the 32-bit destination eax.

When In Doubt, Look It Up
Remember, nobody (not even me, though that’s hard for me to admit) knows
all of the x86 instructions by heart. Whether you’re writing x86 or reading it,
if you encounter something you don’t understand, knowing how to look it up
quickly is key. We always have this tab open for quick lookups: http://ref
.x86asm.net/coder32.html.

http://ref.x86asm.net/coder32.html
http://ref.x86asm.net/coder32.html

42 Chapter 3 ■ x86 Assembly: Instructions

Summary

x86 is a complex, powerful assembly language. However, it isn’t necessary to
understand every bit of it to be an effective software cracker and reverse engineer.

This chapter covered the x86 instructions that make up the vast majority of
assembly code. Learning these instructions is essential and provides a strong
foundation for reverse engineering.

C H A P T E R

43

4

Software reverse engineering is about taking a compiled executable and turning
it into human- readable code. However, understanding how to do the opposite,
building and running an assembly program, can be invaluable to understanding
this process.

This chapter explores some of the key concepts needed to understand how
assembly programs are built and run. This includes how these programs interact
with the outside world, how to actually build and run them, and how they
manage strings.

Output

ANECDOTE

In college, I found out it’s pretty fun to go to a thrift store and buy a bunch of broken
electronics, tear them apart, and rebuild the pieces into something else. Figure 4.1 is
one of the first things I ever built. I really like working with impractical things because
thinking and designing and building and learning is fun, but as soon as you start to
worry about actual applications and usability, it takes away from the enjoyment. So, I
go out of my way to try to work on impractical things.

Building and Running Assembly
Programs

44 Chapter 4 ■ Building and Running Assembly Programs

I was trying to think of the most impractical thing that I could make here. This is a
binary wristwatch that has to be plugged into a power outlet. I never did find a wrist-
band for it, but I was trying to think of the nerdiest thing I could make, and this seemed
pretty nerdy.

Assembly and machine code are great, but at some point your code will want
to communicate with the outside world. For that we need a way to output
information.

If you’ve ever looked at a processor, they are covered in little pins. A proces-
sor’s pins enable the processor to communicate with the outside world. Using
assembly, it is possible to control these pins by toggling them on and off, causing
effects such as turning LEDs on and off. A modern x86 processor has between
400 and 1,000 pins, making it possible to control a lot of things.

Pins are organized into groups called ports. With ports, instead of controlling
individual pins, which would be tedious and time- consuming, it is possible to
control several at the same time. Setting a value on the pins is equivalent to
writing to the port, and getting a value from the pins is reading from the port.

A number of different ports are defined for x86. Table 4.1 shows some exam-
ples of a small subset.

Figure 4.1: Binary wristwatch

Table 4.1: x86 Ports

PORT RANGE SUMMARY

0x0000- 0x001F The first legacy DMA controller, often used for transfers to floppies

0x0020- 0x0021 The first programmable interrupt controller

 Chapter 4 ■ Building and Running Assembly Programs 45

Controlling Pins
In x86, pins can be controlled via the in and out instructions, which take a reg-
ister and a port as parameters.

The syntax of the in instruction is in register, port. For example,
in al, 0x64 gets the status of the keyboard.

The out instruction reverses the order of the parameters, with the syntax
out port, register. For example, out 0x3c0, eax sets the value of a pixel.

In actuality, you are often not directly hardwired to the destination or source
ports, and things are a little more complicated. Pins are attached to a shared bus,
and the work of sending reads/writes to the correct destination is offloaded
to a separate card or bridge. The in and out instructions access predefined
addresses on the bus that the bridge translates. However, the idea is the same.

Tedium
Let’s get back to this notion of output: through in and out instructions it is
possible to set and unset individual pixels. However, a single display screen
can contain thousands or millions of pixels. Setting them individually would
be tedious and inefficient.

PORT RANGE SUMMARY

0x0022- 0x0023 Access to the model- specific registers of Cyrix processors.

0x0040- 0x0047 The programmable interval timer (PIT)

0x0060- 0x0064 The “8042” PS/2 controller or its predecessors

0x0070- 0x0071 The CMOS and RTC registers

0x0080- 0x008F The DMA (page registers)

0x0092 The location of the fast A20 gate register

0x00A0- 0x00A1 The second PIC

0x00C0- 0x00DF The second DMA controller, often used for sound blasters

0x00E9 Home of the Port E9 hack

0x0170- 0x0177 The secondary ATA hard disk controller

0x01F0- 0x01F7 The primary ATA hard disk controller

0x0278- 0x027A Parallel port

0x02F8- 0x02FF Second serial port

0x03B0- 0x03DF The range used for the IBM VGA, its direct predecessors

0x03F0- 0x03F7 Floppy disk controller

0x03F8- 0x03FF First serial port

46 Chapter 4 ■ Building and Running Assembly Programs

Instead, these details are abstracted away. When displaying images, the
graphics card handles the details of setting each of the individual pixels. How-
ever, learning exactly how to communicate with the graphics card can be tedious.

This is where the operating system steps in. It can handle the complexity of
interfacing with the graphics card, which sets the pixel values and displays the
image. Interacting with the operating system requires a system call. So if you
want to play x86 on epic hard mode, you can go down the route of directly
interfacing with the graphics card, but for the purposes of this book, we like
to play on hard- with- help mode, and we’ll leverage the OS to do this heavy
lifting for us.

System Calls

System calls are available in x86 to provide limited I/O functionality invoking
behavior through the operating system (OS). The sets of available system calls
vary depending on the operating system.

Since system calls are a notion of the OS, they are OS-dependent; we will go
through some of the more useful system calls in Linux. System calls are invoked
by loading a function number into the eax register. In Linux, a system call is
then made by invoking an interrupt through the instruction int 0x80.

sys_write
In a higher- level programming language, the sys_write function would have
the syntax ssize_t sys_write(unsigned int fd, const char * buf, size_
t count). This function will return a size indicating the amount of data written.

The sys_write function takes three arguments. The first, fd, is a file descriptor
that indicates where the data should be written. A value of 1 would indicate
writing data to the Linux console. The buf argument contains the data to be
written as output, and count tells the function the number of characters to print.

In x86 assembly, functions can’t be called using this function description.
Instead, the arguments would be loaded into registers, as shown in Table 4.2.
After loading these registers, the system call can be performed with the
int 0x80 instruction.

Table 4.2: sys_write

REGISTER VALUE DESCRIPTION

eax 4 sys_write identifier

ebx 1 (console out) File descriptor

ecx const char* buf String to write

edx size_t count Length of string

 Chapter 4 ■ Building and Running Assembly Programs 47

The registers used in the sys_write function must be loaded over a series
of assembly instructions. The following example shows how sys_write could
be used:

mov edx,len ; message length
mov ecx,buff ; message to write
mov ebx,1 ; file descriptor (stdout)
mov eax,4 ; system function(sys_write)
int 0x80 ; call kernel

sys_exit
The sys_exit system call is equivalent to your main doing a return status; in
higher- level programming languages. This will cause the program to exit. It takes
a single argument, the status code, that is stored in ebx, as shown in Table 4.3.

A call to sys_exit begins by loading values into the registers eax and ebx, as
shown in the following example:

mov eax, 1 ; system function (sys_exit)
mov ebx, 0 ; return 0;
int 0x80 ; call kernel

Printing a String
Printing a string requires turning certain pins on and off on the processor. By
making a system call, an assembly program can offload the work of determining
which pins to turn on and off to the operating system. The OS informs the
graphics card, which selects its bits to turn on and off. This sends information to
the monitor microcontroller, causing it to turn its pins on and off, which draws
on the screen. Along the way, dozens of other controllers may be involved in
the process as well.

An assembly program that prints a string and then exits would use both the
sys_write and sys_exit system calls. We’ll get into the overall file syntax in

Table 4.3: sys_exit

REGISTER VALUE DESCRIPTION

eax 1 sys_exit identifier

ebx int Status code

48 Chapter 4 ■ Building and Running Assembly Programs

the next section. For now, as a way to get you excited and on the edge of your
seat as you read the next section, here’s a sneak peek. The following example
prints the message “Hello, world!” to the console:

global _start

section .text
_start:
 mov eax, 4 ; write
 mov ebx, 1 ; stdout
 mov ecx, msg
 mov edx, msg.len
 int 0x80

 mov eax, 1 ; exit
 mov ebx, 0
 int 0x80

section .data
msg: db "Hello, world!", 10
.len: equ $ - msg

Building and Linking

Reverse engineering and cracking are about understanding someone else’s
existing assembly code. However, you will find that if you do any type of patching/
cracking, writing your own assembly and reverse engineering is much easier if
you understand how the process works in the other direction, writing, building,
and assembling your own assembly code. Building and linking is a crucial step
in this process of moving from assembly code to a functional application.

Building and Linking in Linux
The process of building and linking assembly code varies based on the operating
system, so this section focuses on Linux. In a Linux environment, we traditionally
name assembly files with an .asm extension like program.asm. The program can
then be assembled, linked, and executed using the following three commands:

nasm - f elf program.asm
ld - melf_i386 program.o - o program.out
./program.out

The first of these commands uses the Netwide Assembler, nasm, to assemble
the code into an object file. The - f flag specifies the format, which is ELF, a Linux
executable file. The output will be an object file named program.o.

 Chapter 4 ■ Building and Running Assembly Programs 49

The next step in the process is linking, which will use ld, the GNU linker.
The - melf_i386 specifies the architecture that should be used for linking and
specifies that this should be an ELF binary using i386 (x86). The - o flag specifies
the output filename, which will be program.out.

After linking is complete, the file program.out is a fully functional Linux
executable. This executable can be run using the command ./program.out.

Writing an Assembly Program
The previous example demonstrates how to build and link an assembly program
in Linux. However, before this can occur, you need to have written a program
in assembly! This section covers the core concepts needed to do so.

Sections and Stat

The following example shows the overall structure of an assembly file:

section .text ; section for code
global _start ; exports start method
_start: ; execution starts here

; code here

section .data ; section for data

; variables here

An assembly source file is broken up into a couple of main sections. The
.text section contains the actual assembly code. This section will begin with
the command global _start, which exports the _start label, telling external
programs where to begin running your code. After that comes the _start label,
which indicates the memory address of the first instruction in the program. The
remaining code would follow this first instruction.

After the .text section is the .data section, which contains data that the
assembly program will need to run. A common example of data within an
assembly program is the variables defined within that program.

Labels

The _start label is vital to the function of an assembly program, but it is also
possible to define other labels. Including the text label: in the code would
create a label named label, which is a constant value synonymous with that
location in memory.

50 Chapter 4 ■ Building and Running Assembly Programs

After a label has been defined, it can be used in lieu of a traditional memory
address. Labels can be used anywhere a constant or immediate value could
be used. The following examples show equivalent instructions with and
without labels:

mov eax, [label] ; access the dword stored at the label
mov eax, [0x1000] ; if the label was on data at address 0x1000,
; this is equivalent to the previous instruction

jmp label2 ; jump to the code at the label2
jmp 1337h ; if the label2 was on code at address 1337h,
; this is equivalent to the previous instruction

Labels are used only to make assembly code easier to read and write. After
the code has been built, the word label will be replaced with the equivalent
memory address by the assembler and linker.

Constants

Constants make it easier to work with data. So, for example, instead of recalling
that the maximum size of a buffer is 1000, it is much easier to define a constant
named MAX_SIZE with a value of 1000.

Constants can be defined in x86 assembly using the EQU directive. For example,
the constant MAX_SIZE can be defined with a value of 1000 with the command
MAX_SIZE EQU 1000.

Global Data

nasm makes it possible to declare space for global data of various sizes. Some
commands include the following:

 ■ db: Reserve space for one byte.

 ■ dw: Reserve space for one word (two bytes).

 ■ dd: Reserve space for one dword (four bytes).

 ■ dq: Reserve space for one qword (eight bytes).

The following example shows some instructions that use these commands to
allocate various types of data:

db 0x01 ; store the value "1" in a single byte
db 1, 2, 3 ; store the array 1, 2, 3 as 1 byte elements
db 'a' ; store the ascii value of 'a' in one byte
db "hello", 0 ; store the nul terminated string "hello"
dw 0x1234 ; store 0x1234 as a two byte value
dd 0xdeadbeef ; store 0xdeadbeef as a four byte value
dq 1 ; store 1 as an 8 byte value

 Chapter 4 ■ Building and Running Assembly Programs 51

Storing data in memory provides no benefit unless that data can be accessed
later. Typically, when defining global data, a label is assigned to it as well to
enable it to be referenced in the code.

The following example shows a simple assembly program that defines space
for a dword with value 0, labels it as i, and places the value 1 in it.

section .text
mov dword [i], 1
section .data
i: dd 0

In this example, it’s important to note that i is not a variable, it’s a symbol
created with a label. The use of i in the code is the same as using the memory
address of the allocated data.

Strings

A string is defined in assembly as a sequence of bytes, with each character tak-
ing up a single byte. For example, the word “hello” can be stored in memory
using the command label: db “hello” and referenced in the code as label.

When working with strings in assembly, it is important to note that they are
not null- terminated by default. To explicitly null terminate the string, add a null
(0x0) byte to the end as in label: db “hello”, 0. Null termination is used in
almost all programming languages to store strings; however, the compiler has
been doing this for you. Now that you wield the assembly power, you will need
to do it manually, so any functions that use strings will correctly execute. Without
a null terminator at the end of a string, string- based functions will continue to
grab memory after the intended string and try to use or print it as a character.
This has an unpredictable outcome, as benign as printing some unprintable
characters, to as severe as crashing a program by trying to pull from memory
it doesn’t have permission to use.

times

The times prefix can be used to specify that a particular instruction or prefix
should be repeated a certain number of times. This can be helpful for creating
fixed- length buffers and other applications, as shown in the following examples:

times 100 db 0 ; create 100 bytes, initialized to 0

times 64 db 0x55 ; create 64 bytes, each initialized to 55h

; pad "hello world" to a length of 64
buffer: db 'hello, world' times 64- $+buffer db ' '

52 Chapter 4 ■ Building and Running Assembly Programs

$

$ is shorthand for the address of the current line. It can be used similarly to a
label, as shown in the following examples:

jmp $; Infinite loop

string: db "hello"
length EQU $- string ; Calculate length of string on previous line

In this example, length is an example of a variable name. The value of length
is set to the current address ($) minus the address indicated by the label string.
Since length sits right after the string, that effectively takes the address after
“hello” and subtracts the address at the start, giving you a length of the string
“hello”.

 N OT E Prefixes like times and $ are specific to nasm and will not show up in the
built code. Different assemblers may have different shortcuts.

objdump

Tools like nasm and ld are used to create an executable from assembly code. Object
Dump (objdump) is a Linux tool that reverses this process, taking an executable
and dumping its assembly code. While we will introduce increasingly stronger
tools as we progress through the book, we’re starting with objdump because it’s
on every Linux- based system and provides a good foundation.

objdump can dump the assembly code of any application running on Linux.
As a result, it has a number of possible configuration options. But the two most
important when getting started with reverse engineering include the following:

 ■ - d: Instructs objdump to disassemble the content of all sections

 ■ - Mintel: Specifies that the assembly output should be shown in Intel
syntax (sadly, it uses AT&T by default)

Taking this into account, the syntax for disassembling a program named appname
is objdump - d - Mintel appname. Some sample output for this is shown here:

804a030 <test_key>:

804a030 55 push ebp

804a031 89 5e mov ebp, esp

804a033 53 push ebx

804a034 83 ec 14 sub esp, 0x14

 Chapter 4 ■ Building and Running Assembly Programs 53

objdump’s output is organized into three columns. The first column contains
memory addresses, which are the virtual addresses where the instructions will
be located when the code is run. The second contains the x86 machine code at
that location, and the third holds the x86 assembly code equivalents of that
machine code.

The main exceptions to this layout are labels, as shown at the top of the pre-
ceding table. This label contains a name. Note that the address associated with
the label is the same as that of the first instruction in the code; a label doesn’t
consume any memory space.

Lab: Hello World

It ’s now time for the second lab exercise. Please navigate to
the book’s GitHub at h t t p s : / / g i t h u b . c o m / D a z z l e C a t D u o /
X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES and
find the “hello world” lab.

Skills
This lab provides an opportunity to learn to write and build x86 code applica-
tions. Some of the key skills that will be tested include the following:

 ■ Registers

 ■ Memory

 ■ Instructions

 ■ Systems calls

 ■ Building and linking x86 assembly

This lab also provides hands- on experience with a few different tools, including
the following:

 ■ nasm

 ■ ld

 ■ Makefiles

 ■ objdump

Takeaways
Applications are fundamentally composed of some form of assembly instruc-
tions. Usually, on a PC, this is x86, but sometimes it might be a JIT language or
intermediate language (IL).

Understanding how to create programs in this low- level language provides
insight into how to take them apart as well. When cracking programs, the ability

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

54 Chapter 4 ■ Building and Running Assembly Programs

to write x86 can be invaluable for developing patches to circumvent software
protections.

ASCII

The American Standard Code for Information Interchange (ASCII) and Unicode
Transformation Format (UTF) are both standards that define how computers
represent text. In fact, ASCII is a subset of UTF- 8.

ASCII was developed in 1960 and uses seven bits to represent each character.
Figure 4.2 shows a full ASCII table.

The ASCII standard can support the following types of characters:

 ■ Digits (0–9)

 ■ Lowercase letters (a–z)

 ■ Uppercase letters (A–Z)

 ■ Common punctuation

An understanding of ASCII is useful for reverse engineering because it is
how strings are likely to be represented within assembly code and memory. For

Figure 4.2: ASCII table

 Chapter 4 ■ Building and Running Assembly Programs 55

example, the string “Hello, world” is stored in memory as 0x48, 0x65, 0x6C,
0x6C, 0x6F, 0x2C, 0x20,0x77, 0x6F, 0x72, 0x6C, 0x64.

Identifying ASCII Strings
One of the challenges when reverse engineering is identifying if a series of
bytes is an ASCII string, a number, or something else. For example, the series
of bytes 0x48, 0x65, 0x6C, 0x6C, 0x6F, 0x2C, 0x20, 0x77, 0x6F, 0x72, 0x6C, and
0x64 could be the string “Hello, world”; the values 1,819,043,144; or any of
many more possibilities.

 T I P The difficulty of identifying ASCII strings is why tools like strings often return a
lot of garbage. They just look for a series of bytes that could be interpreted as a string
of printable characters.

The only way to know for certain that a series of bytes is a string is to look at
how it is used by the program. If the bytes are passed to a function that inter-
prets them as a string, then they are likely a string.

In many languages, a helpful sign of a string is a series of printable bytes
terminated by a NULL character. In fact, because there is nothing to tell the pro-
cessor where a string starts or stops, if a string forgets its null terminator, the
process will just keep reading characters until it reaches a problem!

For example, the following program will print “hello” followed by the 16 Bs
and then continue reading and printing memory until it reaches a NULL byte.

#include <stdio.h>
int main()
{
 char mybuffer[16];
 for (int i = 0; i < 16; i++)
 {
 mybuffer[i] = 'B';
 }
 Printf("hello %s\n", mybuffer);
}

Figure 4.3 shows the output of this code.

ASCII Manipulation Tip
The ASCII standard is designed so that capital and lowercase letters are always
separated by 0x20, as shown in Figure 4.4. In higher- level programming languages,

Figure 4.3: Program output

56 Chapter 4 ■ Building and Running Assembly Programs

a toUpper function will simply add 0x20 to the value of a lowercase letter, and
a toLower function will simply subtract 0x20.

Summary

This chapter explores how assembly programs are put together in a forward
direction. This includes how they interact with the outside world, the process
of building and linking them, and how they manage strings.

Understanding these processes in the forward direction can be invaluable to
understanding how it works in reverse. If you know how assembly code moves
from code to executable, you have a better understanding of how to take it apart
and put it back together again.

Figure 4.4: ASCII uppercase and lowercase values

C H A P T E R

57

5

Assembly instructions commonly include destination registers where the result
of an operation will be stored. However, some instructions can have effects
beyond those recorded in this destination register.

x86 uses condition codes to track these effects. This chapter explores these
condition codes and describes the main ones you need to understand to effec-
tively reverse engineer x86 applications.

Condition Codes

Most architectures, including x86, need a means of tracking the basic properties
of previous operations. For example, when evaluating an if statement, the
program needs to evaluate the condition and then act on its result. The ability
to track state information across instructions is essential to the ability to perform
this and similar operations.

To store this state information, the computer has a special-purpose register
(SPR) called flags. On a 32-bit system, this is called the eflags register, while
the 16-bit and 64-bit versions are called flags and rflags, respectively.

Understanding Condition Codes

58 Chapter 5 ■ Understanding Condition Codes

eflags
The eflags register is composed of a set of flags, each of which is represented
by a single bit. Each bit can be set to true (1) or false (0).

The eflags register is broken up into three types of flags.

 ■ Status flags: Status flags represent the status of some operation such as
whether the previous operation evaluated to zero.

 ■ Control flags: Control flags affect how the processor operates, such as
enabling and disabling interrupts.

 ■ System flags: System flags reflect the state of the processor, such as whether
the system is virtualized.

With 32 bits in the eflags register, a significant amount of state information
can be stored in these bits. For reverse engineering, only some of the status
flags are significant.

Of the status flags, four are significant to reverse engineering; these include
the carry, zero, sign, and overflow flags.

Carry Flag

The carry flag (CF) is bit 0 of the eflags register. It specifies whether the last
arithmetic operation resulted in a carry.

A carry indicated that an addition carried a 1 out of the highest bit or a sub-
traction borrowed a 1 into the highest bit. For example, consider the following
calculation, which would cause the carry bit to be set:

 unsigned signed
 0011 0000 48 48
+ 1110 0000 + 224 + -32
1 0001 0000 16 16

Recall that there is nothing inherent about binary to indicate what the value
is; it’s all in how it’s used or interpreted. So, the binary representation in this
example could be interpreted as an unsigned value or signed. Signed, as you
can see, means the option of negative or positive, whereas unsigned means
always positive.

In this example, if you trace the addition, you can see the left-most column,
carried out a 1. Looking at the signed versus unsigned values, you can see that
for unsigned, the carry flag represents an overflow, meaning the result was too
big to store in the size (in this case we’re looking at 1 byte). And this is how it is
traditionally used, to identify overflows/underflows in unsigned math. If the
carry condition is met, then the CF is set to 1.

 Chapter 5 ■ Understanding Condition Codes 59

Zero Flag

The zero flag (ZF) is bit 6 of the eflags register and indicates whether the last
arithmetic operation ended in a zero. For example, the following calculation
would set the zero flag:

 0100 0000 64
- 0100 0000 - 64
 0000 0000 00

The zero flag is easier to reason about, in that the answer is simply all zeros.
There is no interpretation difference between signed or unsigned. If the result
is a 0, then the zero flag is set to 1.

Sign Flag

The seventh bit of the eflags register, the sign flag (SF), specifies whether a sign
bit was set as a result of the previous arithmetic operation. In signed numbers,
the sign bit is the high bit of the register used.

For example, in the instruction add ax, bx, the sign bit is bit 15 of ax. In the
instruction sub bl, dl, the sign bit is bit 7 of bl. If the bit is set, it’s consid-
ered negative, and if it’s not, it’s positive. In the case of the sign bit being set,
the SF will be set to 1. If the top bit of the result is set, we know it’s a negative
number, but it’s not as simple as then using our normal translation to decimal
on the remaining bits to get the value. If a number is negative, it’s stored in
“two’s complement” format, which requires some more massaging to get back
to its true value.

Overflow Flag

The overflow flag (OF) is the eleventh bit of the eflags register and states
whether the previous arithmetic operation resulted in an overflow. An over-
flow happens when the carry into the highest bit doesn’t match the carry out.
Just like the carry flag is useful for unsigned math, the overflow flag is used for
signed math to detect when something didn’t go right.

Often, this indicates one of two cases:

 ■ Positive + Positive = Negative

 ■ Negative + Negative = Positive

For the first case, consider the following calculation:

 0101 0000 80
+ 0101 0000 + 80
0 1010 0000 - 96

60 Chapter 5 ■ Understanding Condition Codes

In this calculation, two positive values are added together. However, the result
sets the sign bit, indicating a negative number. Tracing this column by column
in its binary form, you will see that a 1 is carried into the left-most column, but
nothing is carried out (i.e., a 0 is carried out). This means the carry in did not
match the carry out, and as you can see in its decimal format, we got an incor-
rect negative value as the result.

For an example of the second case, consider the following:

 1000 0000 - 128
+ 1011 0000 + -80
1 0011 0000 48

In this case, two negative numbers are being summed. However, the overflow
causes the result to be a positive value. Again, tracing this at a binary level, we
can see that there is no carry into the left-most column, but there is a carry out,
so the carry in does not match the carry out. When looking at this in the decimal
form we see we get an incorrect positive value.

Other Status Flags

While these four are the most important status flags, they are not the only ones.
Some of the other, less important flags that are still worth knowing include the
following:

 ■ Adjust (AF): Indicates that the last arithmetic results in a carry out of the
lowest 4 bits (used for BCD arithmetic)

 ■ Trap (TF): Enables CPU single-step mode, which is used for debugging

 ■ Interrupt Enable (IF): Enables the CPU to handle system interrupts

 ■ Direction (DF): Sets the direction of string processing from right to left

 ■ Parity (PF): Indicates that the last arithmetic/logical operation results in
even parity (even number of 1s in lowest byte)

Operations Affecting Status Flags
Status flags can be affected by various operations. Four examples include add,
sub, cmp, and test.

add

The add instruction has the potential to modify the carry, zero, sign, and over-
flow flags. For example, the instruction add al, bl can trigger different combi-
nations of flags dependent on the values stored in al and bl. Figure 5.1 shows
the results of five different add operations.

 Chapter 5 ■ Understanding Condition Codes 61

Note the effect that the use of signed or unsigned integers has on the interpre-
tation of the values and their correctness. For example, the second add operation
has a correct result for signed values but an incorrect one for unsigned values.

sub

The sub instruction also has the potential to modify the same flags as add,
which is all four significant status flags. Figure 5.2 shows the various results of
sub al, bl with different values of al and bl.

As with the add operation, the correctness of the result of sub depends on the
values stored in al and bl. For example, both versions of the first example are
correct, but only the signed version of the second has a correct result.

cmp

The cmp instruction is designed to compare two values, which can be memory,
constants, or register. It works by subtracting the second operand from the first
operand. However, the result of the subtraction is discarded, but the flags are
adjusted.

The goal of cmp is to determine whether one value is greater than, less than,
or equal to another. Consider the following example where eax < ebx:

mov eax, 0x100
mov ebx, 0x200
cmp eax, ebx ; evaluates eax- ebx

Figure 5.1: Effects of add al,bl with various inputs

62 Chapter 5 ■ Understanding Condition Codes

The final instruction here is a subtraction, which would result in a negative
value since ebx is greater than eax. As a result, the sign flag would be set to
1 (indicating a negative result), while the zero flag would be set to 0 (i.e., the
result is not zero).

In another example, the value of the first operand, eax, may be greater than
that of the second operand, ebx.

mov eax, 0x300
mov ebx, 0x200
cmp eax, ebx ; evaluates eax- ebx

In this case, the result of the subtraction would be a positive value. As a result,
both the sign and zero flags would be zero.

The final potential case for cmp is if the two operands are equal, as shown here:

mov eax, 0x500
mov ebx, 0x500
cmp eax, ebx ; evaluates eax- ebx

If the operands are equal, the result of the subtraction is zero, which would set
the zero flag but not the sign flag. Figure 5.3 shows a truth table summarizing
the impacts of cmp operations on the sign and zero flags.

Figure 5.2: Effects of sub al, bl with various inputs

 Chapter 5 ■ Understanding Condition Codes 63

test

The test instruction performs a bitwise and between the two operands, which
can be memory, constants, or registers. Like cmp, the result of the operation is
discarded, but the values of flags are adjusted.

The test instruction is commonly used to check if one or more specific bits
are set within a value by checking the zero flag. For example, the following
instructions check if bits 0 or 2 are set:

mov ax, 0x1450
test ax, 0x05 ; check if bit 0 or 2 is set (0x5 is 0000 0101 in binary)

These instructions are equivalent to performing the following mathematical
operation:

 0001 0100 0101 0000 (0x1450)
& 0000 0000 0000 0101 (0x0005)
 0000 0000 0000 0000

The result of this and operation is zero, which would cause the zero flag to be
set. This indicates that neither bit 0 nor bit 2 was set.

The following instructions perform the same test when the value 0x1451 is
placed in ax:

mov ax, 0x1451
test ax, 0x05 ; check if bit 0 or 2 is set

These instructions are equivalent to the following calculation:

 0001 0100 0101 0001 (0x1451)
& 0000 0000 0000 0101 (0x0005)
 0000 0000 0000 0001

In this case, the result of the and operation is nonzero, so the zero flag is not set.
This indicates that at least one of the two bits was set.

 T I P The test instruction can be used to determine whether a number is
even or odd.

Figure 5.3: cmp truth table

64 Chapter 5 ■ Understanding Condition Codes

Summary

Condition codes are used to record some of the effects of an operation that
might not show up in a destination register. For example, a condition code may
indicate if an operation resulted in a zero or caused an overflow. Tracking these
condition codes is essential to understanding the current state of an application
when reverse engineering it.

C H A P T E R

65

6

Earlier chapters focused on the theory and fundamentals of reverse engineering.
Learning how x86 works and common instruction formats is essential to success.

This chapter takes a hands- on approach to reverse engineering and software
cracking. It introduces gdb, a powerful debugger, and explores some important
tips and tricks for software reverse engineering and cracking.

Binary Analysis

Analyzing existing executables makes up a great deal of reverse engineering.
Binary analysis can be accomplished in a few different ways, including static
and dynamic analysis and debugging.

Static and Dynamic Analysis
A program’s functionality can be analyzed in a few different ways. Two of the
main techniques are static and dynamic analysis.

Static analysis involves analyzing the source code without ever running it.
Static analysis has a few advantages, including the following:

 ■ Good starting point for further analysis
 ■ Risk- free method of analyzing potential malware

 ■ No need for access to specialized architectures

Analyzing and Debugging
Assembly Code

66 Chapter 6 ■ Analyzing and Debugging Assembly Code

Static analysis has its advantages, one of the biggest being it’s always an
option. But it can be time- consuming and won’t catch everything. There will
always be pieces of code that are meaningful only at runtime. When analyzing
complex code, without watching the code run, it can be difficult or impossible
to anticipate where something like a jump might go. Also, many code flows are
dictated by the input given to the program, so static analysis isn’t enough to
reason about where code execution will go, making it harder to analyze.

Dynamic analysis is a complementary technique that involves running the
program and analyzing its behavior while it’s running. Some of the benefits of
dynamic analysis include the following:

 ■ More rapid analysis

 ■ Wider detection of potential issues

Dynamic analysis can take a variety of different forms. For reverse engineering,
one of the most common is debugging. By watching an application running,
many of the unknowns during static analysis can be solidified (such as where
code is most likely to jump to). However, dynamic analysis means running the
code in question, and depending on the code, this might not always be feasible.
It could be an excerpt from a larger application, it could require a unique exe-
cution environment that you don’t have access to, or, in the case of malware, it
could be potentially malicious if executed.

Debugging
Recall that the goal of software reverse engineering and cracking is to under-
stand and modify existing software. Debugging is one of the fastest and most
effective ways of accomplishing this. By dynamically analyzing a program’s
functionality and modifying its behavior on the fly, it’s possible to collect the
information necessary for cracking and to test potential cracks of the software.

Debugging is commonly a multistage process. The typical debug flow includes
the following:

1. Set breakpoints on points of interest.

2. Run the code.

3. The execution pauses (“breaks”) at the breakpoint.

4. Examine the program state.

5. Optionally make modifications.

6. Repeat.

Breakpoints

Breakpoints instruct the processor to stop a program’s execution at a particular
point. Breakpoints come in one of two forms:

 Chapter 6 ■ Analyzing and Debugging Assembly Code 67

 ■ Software: Software breakpoints are set on assembly instructions and are
unlimited in number.

 ■ Hardware: A limited number of hardware breakpoints (four in x86) can
be set on assembly instructions or memory accesses.

In this book, early labs focus on the use of software breakpoints, with hardware
breakpoints appearing in later labs. This book will demonstrate the use of a variety
of debuggers, and configuring breakpoints will be different in each of them.

Software Breakpoints
Software breakpoints are the default option for most debuggers. When setting
a software breakpoint, what actually happens behind the scenes is the debugger
actually modifies the instruction, replacing it with a breakpoint instruction. In x86,
this is the int3 instruction (0xcc). A software breakpoint is limited to execution,
meaning the int3 instruction must be executed for the breakpoint to execute.

When the processor reaches the breakpoint instruction, it halts execution
and hands control back over to the debugger. This allows a reverse engineer to
inspect the program state and potentially make modifications.

The main limitation of software breakpoints is that they can be easily detected
by a program that reads its own memory. Through anti- debugging, the program
can remove the breakpoint or take other defensive actions in response to it.

Hardware Breakpoints
Most debuggers support hardware breakpoints. However, they generally must
be manually selected and configured.

A hardware breakpoint doesn’t modify a program’s code like a software
breakpoint does. Instead, the addresses of the breakpoints are stored in hardware
registers.

In x86, the debug registers DR0- 7 are used for hardware breakpoints. Registers
DR0- 4 hold the breakpoint addresses, while DR6,7 store configuration information.

Hardware breakpoints can be configured to break on executing, reading, or
writing a specific address. When the processor detects a condition matching
the breakpoint registers, it hands control over to the debugger.

Hardware breakpoints are useful because they can detect memory access.
For example, a hardware breakpoint can be used to identify where in the code
a particular byte is set or a string is used.

Hardware breakpoints are also useful to evade a program’s defenses against
software breakpoints. If a program is scanning its own code looking for int3
instructions, it will overlook hardware breakpoints, which don’t modify the code.
It’s not anti- debugger proof; with advanced system knowledge, an application
could dig deep enough to watch hardware breakpoints, but it raises the bar a
lot over software breakpoints.

68 Chapter 6 ■ Analyzing and Debugging Assembly Code

gdb

The GNU Debugger (gdb) is the de facto standard for debugging on Linux. It
comes installed on many Linux distros and can be installed on any of them.
Some of the key features that gdb provides include the following:

 ■ Command- line debugger (no GUI)

 ■ Scriptable

 ■ Remote debugging support

gdb is such a ubiquitous debugger that many systems and processors include
a gdb stub to support gdb debugging. While many debuggers are constrained
to a few architectures and platforms, gdb works on hundreds. This book will
explore many different debuggers and will introduce graphical user interface
(GUI)–based debuggers later. However, it’s important to foundationally under-
stand how to use GDB, which is command line. Many “prettier” debuggers
use GDB and its protocol under the hood; they’ve simply wrapped a pretty
interface over it.

Debugging with gdb
As a command- line program, gdb is controlled by entering commands at the
prompt, which displays as (gdb). While the gdb interface may seem archaic, it
is an extremely powerful and hugely popular debugger.

One useful feature of gdb is that commands can be entered as the shortest
nonambiguous form of the command. For example, run can be shortened to r,
info registers to info reg, and disassemble to disas. You’ll get a feel for
some of these as you go.

Launching gdb

gdb can be launched using the gdb command. For example, the executable
printreg- shift.out can be launched with gdb printreg- shift.out, as shown
in Figure 6.1.

Figure 6.1: The gdb command

 Chapter 6 ■ Analyzing and Debugging Assembly Code 69

Disassembly with gdb

Recall that x86 has a few different syntaxes, including Intel and AT&T. The
instruction to specify Intel syntax in gdb is (gdb) set disassembly- flavor intel.

After setting the disassembly flavor, there are a few different options for
starting debugging, including the following:

 ■ disassemble starts disassembly from the current instruction pointer.

 ■ disassemble address starts disassembly at the specified address.

 ■ disassemble label starts disassembly at the specified label (loop, main, etc.).

Figure 6.2 shows an example of disassembly using a label, where the desired
code segment begins with the loop label. The image on the left is the original
assembly source code, and the right half of the image shows the equivalent
disassembly in gdb.

After specifying a starting point, it’s possible to specify a certain number of
instructions to disassemble. For example, the command disassemble main +50
will start disassembly at the main label and print 50 instructions.

Starting and Stopping Code in gdb

The run command is used to execute the program from the very beginning.
This will discard any state information from running the program to this point.

The continue command is used to resume execution after pausing. For example,
a breakpoint could be used to stop execution to view the program stack, fol-
lowed by a continue command to resume.

Program execution can be terminated with the quit and kill commands.
kill terminates the running process, while quit does so and leaves gdb.

gdb Breakpoints

Breakpoints halt code execution to allow analysis of the program state. In gdb,
the break address command specifies a breakpoint at a particular address,

Figure 6.2: Disassembly in gdb

70 Chapter 6 ■ Analyzing and Debugging Assembly Code

Figure 6.3: Setting a breakpoint in gdb

while break label uses a label to indicate the desired breakpoint location, as
shown in Figure 6.3.

gdb info Commands

The info command in gdb can be used to access various types of information.
Some common info commands include the following:

 ■ info files: Shows the various parts of the disassembled file. Figure 6.4
shows an example for a simple executable named a.out.

 ■ info breakpoints: Lists the currently defined breakpoints for the disas-
sembled program.

 ■ info register: Displays the current values of the x86 registers as shown
in Figure 6.5.

 ■ info variables: Shows all defined variables in the application as shown
in Figure 6.6.

In addition to the info register command, it is also possible to print the
values of individual registers with the print $reg command, as shown here:

(gdb) print $esp
$1 = (void *) 0xffffd260
(gdb)

Figure 6.4: gdb info files command

 Chapter 6 ■ Analyzing and Debugging Assembly Code 71

Stepping Through Instructions

The run and continue commands simply start the program running again until
something forces execution to stop such as a breakpoint. This makes it more
difficult to watch what the program is doing or how variables change over time.

The stepi command steps one instruction at a time, as shown in Figure 6.7,
allowing more in- depth analysis. Note that comments are shown because the
application was built in debug mode.

Figure 6.5: gdb info register command

Figure 6.6: gdb info variable command

Figure 6.7: gdb stepi command

72 Chapter 6 ■ Analyzing and Debugging Assembly Code

 N OT E Debug information, such as function/variable names, comments, etc., can
be enabled when compiling using a debug flag, which is supported by most compilers.
For example, in gcc/g++, this is the - g flag. However, this is rarely found when reverse
engineering a commercial executable.

If the next instruction to execute is a function call, stepi will follow the call
into the called function. In many cases, this is undesirable, especially if the
function is well- understood. For example, knowing that an instruction will print
a string is enough information, and there is no need to inspect each instruction
within the printf function.

The nexti command makes it possible to step over a function call. This will
execute the function call and advance to the next visible instruction.

Examining Memory

In gdb, the x command (for “eXamine memory”) can be used to examine memory.
The syntax of the command is x/nfu addr.

In this command, n, f, and u are optional parameters with the following
meanings:

 ■ n: Specifies the number of units (u) of memory that should be displayed

 ■ f: Specifies the display format

 ■ s: Null- terminated string

 ■ i: Machine instruction

 ■ x: Hexadecimal (default)

 ■ u: Specifies the unit size

 ■ b: Bytes

 ■ h: Halfwords (two bytes)

 ■ w: Words (default)

 ■ g: Giant words (eight bytes)

Figure 6.6 showed a variable named byteToPrint, which was located at the
address 0x080490e4. To display 16 bytes of memory at this location, the command
would be x/16x 0x80490e4, as shown in Figure 6.8. The output of the command
shows that the byte of interest has a value of 0x41, which is A in ASCII.

Figure 6.8: gdb x command

 Chapter 6 ■ Analyzing and Debugging Assembly Code 73

In addition to using memory addresses, the x command can also use regis-
ters to specify the dump location. For example, Figure 6.9 shows an example of
dumping 10 bytes in hex format at the location specified by esp.

Segmentation Faults

Segmentation faults, or segfaults, occur when the CPU attempts to read or write
an inaccessible memory location. This could happen because the indicated
location doesn’t exist or the CPU lacks the permissions necessary to access or
modify that memory location.

For example, the command mov eax, [0x00000000] will always result
in a segfault. The reason for this is that address 0x0 is typically not mapped
or accessible by an application, so a read from memory address 0x0. gdb will
cause a segfault to occur.

Segfaults can occur for a variety of different reasons. When exploiting software,
a buffer overflow can cause a segfault. When cracking software, segfaults can
happen if a program is incorrectly patched or errors are made when modifying
execution during debugging. As you start to get into writing and manipulating
assembly code, you will become good friends with segfault. Keeping a stress
ball nearby that you use every time you see a segfault can be therapeutic when
cracking. As a silver lining, when hooked to GDB, as a segfault occurs, gdb will
show the line that caused it, which is helpful for tracking down where the code
went haywire.

Lab: Shark Sim 3000

This lab provides a warm- up reverse engineering challenge. The applica-
tion is intentionally designed so that its behavior is nonobvious. Experience
deciphering and analyzing programs like this are the foundation of software
cracking.

Head to the book’s GitHub page (https://github.com/DazzleCatDuo/
X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES) and
locate the Shark Sim 3000 lab.

Figure 6.9: Printing 10 bytes with the gdb x command

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

74 Chapter 6 ■ Analyzing and Debugging Assembly Code

Skills
This lab is designed to test foundational skills in reverse engineering, including
the ability to take apart and understand an unknown program. Some of the
skills being tested include the following:

 ■ ASCII

 ■ Condition codes

 ■ Debugging compiled programs

 ■ Deciphering unknown assembly instructions and programs

Takeaways
Debugging is an invaluable tool in reverse engineering an application. A
fundamental part of reverse engineering is deciphering new instructions—
there’s not always enough time to understand everything!

One of the secrets to success in reverse engineering is to not get caught up on
unknown assembly instructions. Try to quickly understand the basics of what
they are doing, so you can proceed. In future chapters, you’ll keep working with
gdb and other more powerful debuggers. Now that you’ve started to modify
assembly, you can progress to doing it without any source at all.

Tuning Out the Noise

Effective reverse engineering and software cracking requires proficiency in a
few different skill sets. However, one of the most important is the ability to tune
out the noise and focus on what matters.

Even small programs contain too much code to analyze everything. The vast
majority of the instructions have no relevance to the core application features
and are a waste of time to reverse engineer. Often, knowing what to focus on
is less important than knowing what not to focus on.

When determining what to focus on and not focus on, understanding the
basics is essential. Some extremely common code that should be immediately
recognizable includes the following:

 ■ Control flow constructs

 ■ Stack layout (local variables, incoming parameters, and outgoing
parameters)

 ■ Compiler boilerplate (prologues/epilogues, canaries, stack allocation,
and register management)

These will all be explored in detail in the upcoming chapters to make you a
pro at recognizing them quickly.

 Chapter 6 ■ Analyzing and Debugging Assembly Code 75

There is an order of operations to follow when prioritizing reverse engineering
efforts: function calls ➪ control flow ➪ instructions ➪ boilerplate.

 ■ Function calls: Focus on determining what functions are called. Often,
knowing that a function calls CreateDialog is enough to understand its
purpose.

 ■ Control flow: If necessary, explore the control flow, such as determining
that CreateDialog is called in a loop within that function.

 ■ Individual instructions: If that is not enough, examine individual
instructions.

 ■ Compiler boilerplate: Examining boilerplate is almost never useful to
software RE or cracking. However, it’s important to understand typical
boilerplate so that it can be quickly identified and ignored.

Summary

This chapter introduced gdb, a powerful and widely used debugger for Linux
systems. Gaining familiarity and hands- on experience with gdb is important for
an aspiring reverse engineer or cracker since this tool can be used to analyze
software for a wide variety of different systems.

C H A P T E R

77

7

A program is a series of instructions, and an application may not move linearly
from one instruction to the next. When reversing and cracking an application,
it’s vital to understand control flows and the various factors that can affect them,
such as if statements and loops in higher-level languages.

When reversing a function in x86 or a higher-level language, you’ll likely run
into functions as well. This chapter also explores how functions work in x86
and their effects on the program stack.

Control Flow

So far, the assembly code that has been explored in this book has followed a
sequential stream of instructions. Execution simply continues from top to bot-
tom. However, most applications are not completely sequential. Consider the
following code block:

if (x) {
 // Do something
}

When executing this code, the processor will evaluate the condition, x, and
determine whether it is true. If so, it moves on to the instructions within the
if block.

Functions and Control Flow

78 Chapter 7 ■ Functions and Control Flow

However, if the condition, x, is not true, then the instructions within the if
block are skipped. This requires the ability to tell the processor to execute some
instructions and not others, changing the flow of execution.

The Instruction Pointer
The eip register is known as the instruction pointer and holds the address of
the next instruction to execute. The processor will automatically increment the
value stored in eip after an instruction is executed.

Allowing eip to be incremented after each instruction makes it possible to
run a sequential series of instructions. However, in some cases, we want to
conditionally execute code. This requires a different updating of eip. However,
eip can’t be manipulated directly (recall it’s a special-purpose register [SPR]).
Instead, control flow instructions are used to adjust eip.

Control Flow Instructions
The most common deviations from the normal execution flow that force changes
to eip are known as jumps or branches. For example, the following code block
has a branch at the if statement:

int x = 1;
int y = 2*x;
if (!y) { // branch!
 x = 2;
}

When high-level code like this is assembled, jump instructions are used to
indicate what the eip register should be set to. A jump instruction has the syntax
jmp op, where op can be a memory address or a label.

The jmp instruction is a nonconditional jump that is always followed (conditional
jumps are covered later in this chapter).

jmp

The jmp instruction has the syntax jmp op. Its purpose is to transfer the program’s
control flow to the memory location op by setting eip to the value stored in op.

Some examples of jmp instructions include the following:

jmp eax ; Copies eax into eip (branches to eax)
jmp label ; Branches to the instruction at label
jmp $; An infinite loop in nasm(valuable
 ;debugging tool in assembly)

 Chapter 7 ■ Functions and Control Flow 79

jmp instructions can be used to implement various functions. For example,
the following instructions count up from zero in an infinite loop:

 mov eax, 0
loop: add eax, 1
 jmp loop

Conditional Jumps

Conditional jumps are a way to tie whether or not a jump is taken to a condition
being either true or false. This determines whether a jump should be performed
based on the values stored in the status flags. For example, consider the fol-
lowing instructions:

cmp eax, ebx
jle done

The jle (jump less than or equal to) instruction will jump to the specified
address or label if the flags register indicates that a previous comparison resulted
in a less than or equal to. In this case, the instruction right before it (cmp) is being
used to compare eax and ebx and set the flags. Recall that cmp takes operand
1 minus operand 2 and throws away the result. So, to get a less than or equal
to condition, eax would need to be less than or equal to ebx. In this case, the
processor will jump to the label done. Otherwise, the jump will be skipped, and
execution will continue to the next instruction after jle.

Numerous conditional jump instructions exist in the x86 language. Table 7.1
lists these instructions and the conditions that determine whether the jump is
performed.

Table 7.1: x86 conditional jump instructions

INSTRUCTION MEANING CONDITIONS

je Jump if equal. ZF = 1

jz Jump if last result is zero. ZF = 1

jne Jump if not equal. ZF = 0

jge Jump if greater than or equal to. SF = OF

jl Jump if less than. SF != OF

jle Jump if less than or equal to. ZF = 1 OR

SF != OF

jg Jump if greater than. ZF = 0 AND

SF == OF

80 Chapter 7 ■ Functions and Control Flow

Looking at the table, you might note that some instructions have identical
conditions. For example, jz and je will both jump if the zero flag (ZF) is set
to one. This means that the jump is performed if the two indicated values are
equal. But logically, they’re treated as different things. “Jump if the previous
result is zero” might be used after subtracting two numbers, whereas “jump
equal” is more likely used after a comparison.

For example, consider the case where eax = ebx = 0x10. The instruction
cmp eax, ebx performs subtraction and will set the zero flag if executed. Both
the jz and je instructions will perform a jump if they follow this instruction.

These instructions can be used interchangeably, but they are typically chosen
based on the instruction used to set the flags that determine the jump. For
example, if the instruction sub eax, ebx is used to perform the conditional,
then jz will likely be used since you’re looking at a zero result to a mathematical
operation. If the instruction cmp eax, ebx is used, then je will be used because
a comparison tests equivalence.

Remember that cmp performs subtraction behind the scenes, so it has the
same effect on flags as the sub operation. jz and je are synonymous instruc-
tions designed solely to make assembly code more readable.

Pitfalls of Conditional Jumps

Conditional jumps use the status flags to determine whether a jump should be
taken. But every instruction operates in isolation, and the conditional jumps
are unaware of which compare or mathematical expression you want to do a
conditional jump on. This can cause issues if the status flags are changed between
the conditional instruction and the jump. While a compiler would not make
this mix up, if you’re writing assembly, you will be forced to reason about this.

For example, consider the following set of instructions:

cmp eax, ebx
cmp edx, ecx
jle done

In this case, your intent may be for the instruction cmp eax, ebx to determine
whether the jump is followed. However, cmp edx, ecx sets the flags last before
the jump, overwriting the previous settings. Therefore, the jump is performed
based on the outcome of the second compare, not the first.

With multiple cmp instructions in a row, it may be obvious that the last cmp
instruction sets the flags for the jump. However, with other instructions, this
may be less obvious, as in the following instructions:

cmp eax, ebx
add ecx, 1
je done

 Chapter 7 ■ Functions and Control Flow 81

In this series of instructions, the intent may have been to use the cmp instruction
to set the flags for the jump. However, the add instruction also updates the status
flags and overwrites the previous settings. Instead of jumping if eax = ebx, the
jump is performed if the add instruction sets the zero flag (i.e., ecx + 1 = 0).

Example

Jump instructions are commonly used to implement if statements and loops.
The following assembly code sums the numbers 0–4 using a loop:

 mov eax, 0 ; initialize eax (accumulator) to 0
 mov ecx, 0 ; initialize ecx (counter) to 0

loop:
 add eax, ecx ; add current iteration
 add ecx, 1 ; increment counter
 cmp ecx, 5 ; at 5 iterations yet?
 jne loop ; loop if not yet 5

done:

The iterator in this loop is stored in the ecx register and is initialized before
the loop. The eax register is the accumulator register and holds the running sum.

The loop begins by adding the current loop counter to the accumulator and
then incrementing the loop counter. This implements the desired logic of sum-
ming the values 0–4 as the loop iterates.

The branch occurs at the jne (jump not equal to) instruction in the second-
to-last line. The previous instruction is a cmp, which checks if the loop counter
is equal to 5 and sets the status flags accordingly. If the loop counter does not
equal 5, the jump triggers, and the eip register is set to the address indicated
by loop, beginning another iteration. If the loop counter does equal 5, the jump
is not taken, and the processor continues on to the done label.

Logic Constructs in x86

C/C++ and similar high-level languages have multiple logic constructs that
cause nonsequential code execution. Some examples include the following:

if (...) { ... }
if (...) { ... } else { ... }
if (...) { ... } else if (...) { ... } else { ... }
while (...) { ... }
do { ... } while (...);
for (...; ...; ...) { ... }
switch (...) { ... }

82 Chapter 7 ■ Functions and Control Flow

In assembly, these logical constructs are written using a combination of
comparison (cmp) and jump (jmp, je, jne, jl, jle, jg, and jge) instructions.
When code is compiled, the compiler will automatically perform the transla-
tion to assembly code.

When writing assembly code, it is necessary to perform the conversion from
high-level concepts to assembly manually. Or when reasoning about other
people’s code, it is essential to be able to understand how these structures look
in assembly. To build up this recognition, focus on how you would take these
higher-level language concepts and translate them to assembly. Accomplishing
this is a two-step process:

1. Remove code blocks: Rewrite code replacing logical constructs with goto
statements.

2. Assemble: Rewrite the program in assembly.

if (. . .) {. . .}
An if statement is one of the simplest high-level logical constructs. With code
blocks, it looks like the following:

if (condition)
{
 code_if_true;
}

The first step is to remove code blocks. Code blocks are code that is nested
inside curly braces: {}. When removing these code blocks, use goto statements,
which tell code where to jump for execution. Not all higher-level languages have
a concept of a goto, but focus on this as pseudocode and leverage the goto. The
following code is the same if statement written without code blocks:

if (!condition)
 goto skip_block;

code_if_true;

skip_block:

Note that, in this version, the condition is inverted. This is because the jump
past the if block occurs only if the condition is false, while the if block of an
if statement specifies what happens if the condition is true. Removing code
blocks will always involve inverting the condition.

 Chapter 7 ■ Functions and Control Flow 83

Converting this from pseudocode to a functional application requires replac-
ing condition and code_if_true with actual code.

WITH BLOCKS WITHOUT BLOCKS

if (x==5)

{

 x++;

 y=x;

}

if (x!=5)

 goto skip_block;

x++;

y=x;

skip_block:

After removing the code blocks, converting the code to assembly is much
easier. Then, this can be directly mapped to their x86 equivalents.

CODE X86 ASSEMBLY

if (x!=5)

 goto skip_block;

x++;

y=x;

skip_block:

cmp dword [x], 5

jne skip_block

inc dword [x]

mov eax, [x]

mov [y], eax

skip_block:

if (. . .) { . . . } else { . . . }
Adding an else statement to an if construct increases the complexity and
the required number of jumps. In addition to skipping over the if block if the
condition evaluates as false, an if (...) { ... } else { ... } construct
jumps over the else block after executing the code in the if block.

The following samples show how this logical construct appears with and
without blocks:

84 Chapter 7 ■ Functions and Control Flow

WITH BLOCKS WITHOUT BLOCKS

if (condition)

{

 code_if_true;

}

else

{

 code_if_false;

}

if (!condition)

 goto false_block;

code_if_true;

goto skip_block;

false_block:

code_if_false;

skip_block:

Note that the code uses two different labels in its goto statements. The label
false_block is used to skip over the if block if the condition is false, while
the label skip_block is used to jump past the else block after executing the if
block. Just like before, invert the conditional statement when rewriting code
without blocks.

Replacing the pseudocode with actual code yields the following with and
without code blocks:

WITH BLOCKS WITHOUT BLOCKS

if (x)

{

 x++;

}

else

{

 x--;

}

if (!x)

 goto false_block;

x++;

goto skip_block;

false_block:

x--;

skip_block:

As before, removing the blocks makes it easier to convert the high-level code
into assembly code.

 Chapter 7 ■ Functions and Control Flow 85

CODE X86 ASSEMBLY

if (!x)

 goto false_block;

x++;

goto skip_block;

false_block:

x--;

skip_block:

cmp dword [x], 0

je false_block

inc dword [x]

jmp skip_block

false_block:

dec dword [x]

skip_block:

if (. . .) { . . . } else if { . . . } else { . . . }

if statements can be made more complex and evaluate multiple different condi-
tions. The following demonstrates an if statement with else if and else with
and without blocks. But the process still stays the same. Invert the condition,
and add gotos.

WITH BLOCKS WITHOUT BLOCKS

if (condition_1)

{

 code_if_1;

}

else if (condition_2)

{

 code_if_2;

}

else

{

 code_if_false;

}

if (!condition_1)

 goto test_2;

code_if_1;

goto skip_block;

test_2:

if (!condition_2)

 goto false_block;

code_if_2;

goto skip_block;

false_block:

code_if_false;

skip_block:

86 Chapter 7 ■ Functions and Control Flow

In this version of the code, multiple labels and jumps are necessary to convert
the code to a version without blocks. Take a real-world example of this, which
implements a grading system with an extremely heavy curve.

WITH BLOCKS WITHOUT BLOCKS

if (score>70)

{

 grade='a';

}

else if (score>50)

{

 grade='b';

}

else

{

 grade='c';

}

if (score<=70)

 goto test_2;

grade='a';

goto skip_block;

test_2:

if (score<=50)

 goto false_block;

grade='b';

goto skip_block;

false_block:

grade='c';

skip_block:

Note that, once again, converting to a blockless version requires flipping the
conditions. The strictly less than statements become greater than or equal to 1.
The following example shows how this code is then easily translated to assembly:

CODE X86 ASSEMBLY

if (score<=70)

 goto test_2;

grade='a';

goto skip_block;

test_2:

if (score<=50)

 goto false_block;

cmp dword [score], 70

jle test_2

mov byte [grade], 'a'

jmp skip_block

test_2:

cmp dword [score], 50

jle false_block

 Chapter 7 ■ Functions and Control Flow 87

CODE X86 ASSEMBLY

grade='b';

goto skip_block;

false_block:

grade='c';

skip_block:

mov byte [grade], 'b'

jmp skip_block

false_block:

mov byte [grade], 'c'

skip_block:

do { . . . } while (. . .);
Higher-level programming languages have a number of different loop structures,
each of which works slightly differently. A do...while loop is guaranteed to
perform at least one iteration before evaluating the condition that would ter-
minate the loop. The following is an example of a do...while loop with blocks:

do
{
 code;
}
while (condition);

Unlike if statements, a do...while loop evaluates its condition at the end,
so further iterations of the loop require a jump backward. As before, this code
needs to be rewritten without code blocks. The following shows the same
do...while loop using goto statements instead of blocks:

loop:

code;

if (condition)
 goto loop;

Unlike an if statement, a do..while loop doesn’t invert the condition being
tested. This is because the backward jump is performed only if the condition is
true and another iteration through the loop is required.

Now, take a look at a version of the code using real conditions and logic.

88 Chapter 7 ■ Functions and Control Flow

WITH BLOCKS WITHOUT BLOCKS

do

{

 y*=x;

 x--;

}

while (x);

loop:

y*=x;

x--;

if (x)

 goto loop;

Converting this code to not use blocks is relatively simple because the flow of
instructions is largely the same. The main difference is that the while statement
is replaced by an if and a goto.

Unlike the previous examples, most of the complexity of converting this to
assembly lies in the complexity of the sample code, not the branches.

CODE X86 ASSEMBLY

loop:

y*=x;

x--;

if (x)

 goto loop;

loop:

mov eax, [y]

mul dword [x]

mov [y], eax

sub dword [x], 1

cmp dword [x], 0

jne loop

while (. . .) { . . . }
A do...while loop guarantees that a single iteration of the loop will occur before
the condition is evaluated. A while loop evaluates the condition immediately,
so the code within the loop may not execute at all. The following code demon-
strates a while loop with and without code blocks. A while loop can be broken
down into an if statement and thus follows the normal pattern for converting
an if statement.

 Chapter 7 ■ Functions and Control Flow 89

WITH BLOCKS WITHOUT BLOCKS

while (condition)

{

 code;

}

loop:

if (!condition)

 goto done;

code;

goto loop;

done:

Note that since the condition is evaluated at the beginning, it is inverted like
with the if statements. The following demonstrates how this might look when
converted from pseudocode to actual code:

WITH BLOCKS WITHOUT BLOCKS

while (tired)

{

 sleep();

}

loop:

if (!tired)

 goto done;

sleep();

goto loop;

done:

After the code is converted to remove blocks, it can be translated to x86
assembly as shown in the following:

CODE X86 ASSEMBLY

loop:

if (!tired)

 goto done;

sleep();

goto loop;

done:

loop:

cmp dword [tired], 0

je done

call sleep

jmp loop

done:

90 Chapter 7 ■ Functions and Control Flow

for (. . .; . . .; . . .) { . . . }
A for loop operates differently than a while or do... while loop. Instead of
running a variable number of times based on a condition, a for loop includes
a loop condition plus initializes a value and updates a value.

The for statement includes three expressions. The first of these initializes the
loop counter. The second defines a condition for terminating the loop’s execution,
and the third defines how the loop counter will be changed between iterations.
The following shows this in pseudocode with and without code blocks:

WITH BLOCKS WITHOUT BLOCKS

for (expr_1; expr_2; expr_3)

{

 code;

}

 expr_1;

 loop:

 if (!expr_2)

 goto done;

 code;

 expr_3;

 goto loop;

 done:

When converting a for loop to not use code blocks, the three expressions
in the for statement are split up across the code. The first expression is a pre-
condition that occurs only one time before the loop, and the second starts out
the loop. The final condition, which changes the value of the loop counter, is
executed at the end of each loop iteration.

These three expressions in the for statement are easier to understand when
looking at real code. For example, the following code defines a loop counter,
i, and initializes it to zero. This loop counter will be incremented by 1 in each
loop iteration (i++), and the loop will stop running when i reaches 100.

WITH BLOCKS WITHOUT BLOCKS

for (i=0; i<100; i++)

{

 sum+=i;

}

 i=0;

 loop:

 if (i>=100)

 Chapter 7 ■ Functions and Control Flow 91

WITH BLOCKS WITHOUT BLOCKS

 goto done;

 sum+=i;

 i++;

 goto loop;

 done:

Note that, like a while loop or if statement, a for loop inverts the condition.
Once again, this is because the condition is evaluated at the beginning of the
loop rather than at the end as in a do..while loop.

The following shows what a for loop looks like in x86 assembly:

CODE X86 ASSEMBLY

 i=0;

 loop:

 if (i>=100)

 goto done;

 sum+=i;

 i++;

 goto loop;

 done:

mov dword [i], 0

loop:

cmp dword [i], 100

jge done

mov eax,[i]

add [sum],eax

inc dword [i]

jmp loop

done:

switch (. . .) { . . . }
A switch statement is a logical structure that exists in some programming
languages to simplify conditional logic. The purpose of a switch statement is
to execute one of several different operations based on the value of a certain
variable. The following switch statement evaluates the value stored in op and
prints the character representing that operation:

92 Chapter 7 ■ Functions and Control Flow

typedef enum {ADD, SUB, MUL, DIV, MOD} op_t;

switch (op) {
 case ADD:
 c='+'; break;
 case SUB:
 c='- '; break;
 case MUL:
 c='*'; break;
 case DIV:
 c='/'; break;
 case MOD:
 c='%'; break;
 default:
 c='?'; break;
}

Any switch statement can be written using a series of if and else-if state-
ments. However, this can quickly become both complex to write and inefficient
to execute. Because if you’re a match for the very last case, you had to execute
every single prior comparison to determine that. The following is the equivalent
of the previous switch statement using if and else-if statements:

if (op==ADD)
 c='+';
else if (op==SUB)
 c='- ';
else if (op==MUL)
 c='*';
else if (op==DIV)
 c='/';
else if (op==MOD)
 c='%';
else
 c='?';

Building a Jump Table

When evaluating this list of if and else-if statements, the processor needs
to perform five checks to figure out what to do with MOD, which is very ineffi-
cient. Imagine a scenario where there were hundreds of options. . .or thousands.
Incredibly inefficient to execute. To optimize this process, a compiler may build
a jump table instead.

A jump table is an assembly data structure that provides a list of target addresses
for a switch statement, as illustrated in Figure 7.1. Once a switch statement has
determined which case is correct, it can use that case number as an index into
the array of addresses, enabling it to jump directly to the desired code block.

 Chapter 7 ■ Functions and Control Flow 93

The following code illustrates what a program using a jump table might look
like in assembly:

.section data
table:
dd target_0
dd target_1
dd target_2
dd target_3
dd target_4

.section text
mov eax, [op]
cmp eax, 5
jge default
jmp [table+eax*4]

target_0:
mov byte [c], '+'
jmp done

target_1:
mov byte [c], '- '
jmp done

target_2:
mov byte [c], '*'
jmp done

target_3:
mov byte [c], '/'
jmp done

target_4:
mov byte [c], '%'

Figure 7.1: Example jump table

94 Chapter 7 ■ Functions and Control Flow

jmp done

default:
mov byte [c], '?'
jmp done

done:

It begins with the jump table, which contains the addresses of the various
code blocks in memory. Each of these code blocks, labeled as target_x, moves
the appropriate character into byte [c] and then jumps to the done label.

In between the table and the target code blocks is the code that actually
implements the switch statement under the .section text heading. This code
begins by moving op into eax. It then checks if op is greater than or equal to 5.
If so, it jumps to the default case.

If the value of op is less than 5, it maps to one of the targets. By using it as
a lookup into the jump table, the processor can retrieve the address of the
corresponding code block and jump to that location to execute the code.

In this case, using the jump table, the execution time is the same regardless
of which case it is. The last case doesn’t take any more instructions or compar-
isons than the first.

Missing Cases

A jump table assumes that the cases cover a continuous range of values. For
example, in the following code sample, a switch statement has the cases 1, 2,
4, and 5. In this scenario, the missing 3 can be a problem. Something needs to
go in the third spot in the jump table.

switch (x) {
 case 0:
 ...
 case 1:
 ...
 case 2:
 ...
 case 4:
 ...
 default:
 ...
}

Missing values in a jump table can be filled with the default address or done
if there is no default, as shown next. This will cause the processor to jump to the
proper location when op equals 3, and it attempts to jump to the corresponding
location in the jump table.

 Chapter 7 ■ Functions and Control Flow 95

JUMP TABLE

target_0

target_1

target_2

default

target_4

Nonzero Bases

A jump table is designed to have a set of cases that start at 0. However, a switch
statement may have nonzero case values, as shown in the following code sample:

switch (x) {
 case 'a':
 ...
 case 'b':
 ...
 case 'c':
 ...
 case 'd':
 ...
}

In this case, it’s necessary to find a way to zero the cases. With ASCII, it’s
necessary to find the lowest case in the jump table that, for this example, has a
value of a, or 97. When implementing a jump table for this switch statement,
the code can use an offset, accessing values as table[x-97]. In the following
jump table, target_a will point to case a of the switch statement.

JUMP TABLE

target_a

target_b

target_c

target_d

Impractical Jump Tables

A compiler will use these tricks to improve code efficiency, and you can too
when writing code by hand. However, sometimes a jump table just won’t work.
For example, consider the following code:

switch (x) {
 case 1:

96 Chapter 7 ■ Functions and Control Flow

 printf("this is the beginning."); break;
 case 1000:
 printf("this is the end."); break;
}

A jump table for this switch statement would need to have 1,000 entries and
998 of them would point to the done label. In this case, an if/else statement
is the more efficient option.

That’s not the only case where it’s impractical; a larger jump table with hun-
dreds of cases, or a table that uses an index that can’t easily be zeroed or has too
many gaps in the table, can be impractical. But as you both write and dissect
assembly code, it’s important to be able to understand these structures and
how they’re used.

Continue
Some higher-level languages include the continue keyword. continue is used
inside a loop and instructs the processor to jump to the next iteration of the
loop, skipping any instructions that follow.

For example, in the following code sample, the second section labeled code
would be unreachable. Each time the continue statement is evaluated, the pro-
cessor jumps directly to the while statement.

do
{
 code;
 continue;
 code;
}
while (condition);

A loop with a continue statement looks similar to a normal loop of that type
when written without code blocks. As shown next, a continue can be implemented
by using a goto that jumps to a label located right before the loop condition.

loop:

code;
goto check_condition;
code;

check_condition:
if (condition)
 goto loop;

The following examples show an example of a loop with a continue state-
ment using actual code:

 Chapter 7 ■ Functions and Control Flow 97

WITH BLOCKS WITHOUT BLOCKS

do

{

 x--;

 continue;

 x++;

}

while (x);

loop:

x--;

goto check_condition;

x++;

check_condition:

if (x)

 goto loop;

In this code, the instruction x++; will never execute because the continue
always causes it to be skipped. Typically, a continue will be located inside of
an if statement because, otherwise, the code following it is pointless. This con-
trived example is designed to demonstrate how continue works without the
complexity of if statements nested within a loop.

Once the code has been converted to remove code blocks, it can be translated
to assembly. As before, a goto can be implemented using a nonconditional jump.

CODE X86 ASSEMBLY

loop:

x--;

goto check_condition;

x++;

check_condition:

if (x)

 goto loop;

loop:

sub dword [x], 1

jmp check_condition

add dword [x], 1

check_condition:

cmp dword [x], 0

jne loop

break
The break keyword also exists in some programming languages, and it instructs
the processor to exit the current loop. As with continue, the second chunk of
code in the following example will never execute, as the break would typically

98 Chapter 7 ■ Functions and Control Flow

be inside of a conditional statement, but this is an example simply to demon-
strate the break mechanism.

do
{
 code;
 break;
 code;
}
while (condition);

The following example demonstrates how this code would be implemented
without code blocks. The break keyword is also replaced with a goto, but this
one jumps to a point outside of the loop rather than before the conditional.

loop:

code;
goto break;
code;

if (condition)
 goto loop;

break:

In the following example, the break statement would terminate the loop after
the operation x-- has been evaluated once. In this case, the x++ statement and
the loop conditional will never be executed, but again this is sample code. It
shows how you’d easily put the break into a conditional.

WITH BLOCKS WITHOUT BLOCKS

do

{

 x--;

 break;

 x++;

}

while (x);

loop:

x--;

goto break;

x++;

if (x)

 goto loop;

break:

 Chapter 7 ■ Functions and Control Flow 99

The following example shows how the code can be converted to assembly:

CODE X86 ASSEMBLY

loop:

x--;

goto break;

x++;

if (x)

 goto loop;

break:

loop:

sub dword [x], 1

jmp break

add dword [x], 1

cmp dword [x], 0

jne loop

break:

&&
In higher-level languages, a conditional in an if statement or a loop has the
potential to evaluate multiple different conditions such as a Boolean AND (&&).
In the following example, the if block will be executed only if both condition_1
and condition_2 are true.

if (condition_1 && condition_2) {
 code;
}

When converting this code to remove code blocks, it is necessary to break the
multipart if statement into two different if statements. Each of these negates
one of the conditionals that were included in the original if statement.

if (!condition_1) goto skip_block;
if (!condition_2) goto skip_block;
true:
code;
skip_block:

Once rewritten like this (without code blocks), follow the same formula to
translate this to assembly.

100 Chapter 7 ■ Functions and Control Flow

||
Another option in if statements is to combine multiple conditions with a Boolean
OR (||). An example of this is shown in the following pseudocode:

if (condition_1 || condition_2) {
 code;
}

A Boolean OR is also broken into two if statements when removing code
blocks. However, these if statements look different than with a Boolean AND.

if (condition_1) goto true;
if (!condition_2) goto skip_block;
true:
code;
skip_block:

A Boolean OR statement is true if either of the two conditions is true. In the
previous example, the first if statement uses the original condition_1 and
jumps to the true label since, if it is true, there is no need to evaluate the second
condition.

However, if this condition is false, the code continues to evaluate condition_2.
This condition is inverted, and the jump skips to the end of the if statement.
If condition_2 is true, the code falls through to the true block. Otherwise, it
jumps past the if statement.

Stack

In assembly, the stack is used to store a few different types of data, including
the following:

 ■ Local variables

 ■ Scratch space

 ■ Parameters and function calling

The stack gets its name from the fact that it is a last-in-first-out (LIFO) structure
like a stack of paper. This conceptually matches programming control flow, and
stacks are extremely common in a wide variety of architectures.

The stack will have a stack pointer that indicates the top of the stack. A few
instructions specifically dedicated to stack manipulation will be explored in
depth in this section. A push stores a new value at the current top of the stack
and updates the stack pointer to indicate the new top of the stack (think of it

 Chapter 7 ■ Functions and Control Flow 101

like adding a new piece of paper to your stack). A pop will move the value at the
top of the stack into a register or memory address and update the stack pointer
to indicate the value below it, which is the new top of the stack (taking the top
piece of paper off the stack).

How the Stack Works
The program stack grows up from a base address when new functions are called
and shrinks down as functions return. As the stack grows taller, the addresses
decrease, and as it shrinks, the addresses increase.

The x86 Stack
The stack is not a fundamentally separate object or memory space on the pro-
cessor. Instead, it is a region of memory that has been allocated and designated
to serve as the stack. It exists in memory alongside the rest of the program, and
data is simply space allocated by an application. As an example, the following
code would allocate 128 bytes that you could use as stack space:

section .data
times 128 db 0
stack equ $- 4

In x86 there are two registers that are used to manage the stack:

 ■ esp: The stack pointer holds the address of the top of the stack.

 ■ ebp: The base pointer holds the address of the base of the stack frame.

Logically, a stack would grow upward, and in x86 this means decreasing in
address as shown in Figure 7.2. Think of it like an upside-down thermometer,
where 0 is at the top and the largest number is at the bottom.

Figure 7.2: Stack address growth

102 Chapter 7 ■ Functions and Control Flow

Consider the following fragment of an assembly file:

mov esp, stack
...
section .data
times 128 db 0
stack equ $- 4

The times 128 db 0 instruction allocates space for a 128-byte stack. Then,
the instruction stack equ $-4 defines a constant stack, set to an initial value
of the current location ($) minus 4 (i.e., 4 bytes into the end of the stack), that
holds the address of the final dword (4-byte chunk) of that stack.

The first instruction in this code sample initializes the stack pointer, esp, to
this constant value. The stack can then grow up as new data is added via push
instructions.

Push and Pop

The push and pop instructions are used to add and remove data from the stack.

Push

The push instruction will add 4 bytes or 1 dword to the top of the stack. It takes
a single argument that can be a register name, memory address, or constant.

push <register>
push <memory>
push <constant>

When a push is performed, the stack pointer, esp, is automatically decremented
by 4 to indicate the new top of the stack. Then, the value being pushed to the
stack is placed at this location.

Table 7.2 illustrates how the push instruction functions. In this case, the stack
pointer, esp, begins with a value of 0x120, as shown in the left of Table 7.2. Then,
the following instructions are executed:

; esp = 0x120
mov eax, 0xFEDA8712
push eax
; esp = 0x11C

These instructions will place 1 dword or 4 bytes on the stack. To accomplish
this, the stack pointer will be decremented to point to address 0x11C. Then, the
value 0xFEDA8712 will be stored on the stack, as shown in the table on the right
of Table 7.2.

 Chapter 7 ■ Functions and Control Flow 103

The single push instruction wraps a couple of steps into a single instruction.
The following code sample is equivalent to the previous:

;esp = 0x120
mov eax, 0xFEDA8712
sub esp, 4
mov [esp], eax
; esp = 0x11C

In this sample, the value of the stack pointer is explicitly decremented to
point to the new top of the stack. Then, the value stored in eax is moved to this
location. These two approaches are interchangeable, but using push is fewer
instructions.

Pop

In x86, the pop instruction is the inverse of the push instruction and removes
one dword from the stack. It has the syntax pop dst, where dst can be a reg-
ister or memory address.

The pop instruction reverses the operations performed by push. It starts by
moving the value stored at [esp] into the indicated register or memory location.
Then, it automatically increments esp by 4 to point to the new top of the stack.

Table 7.3 illustrates how pop can be used to undo the push from the previous
example. At the end of that example, the stack resembled the columns on the
left of this table.

;esp = 0x11C
pop eax
;esp = 0x120
;eax = 0xfeda8712

Table 7.2: Pushing a variable onto the stack

ADDRESS VALUE ADDRESS VALUE

0x11B 0x11B

0x11C 0x11C (esp) 0x12

0x11D 0x11D 0x87

0x11E 0x11E 0xDA

0x11F 0x11F 0xFE

0x120 (esp) 0x11 0x120 0x11

0x121 0x22 0x121 0x22

0x122 0x33 0x122 0x33

104 Chapter 7 ■ Functions and Control Flow

Executing the instruction pop eax would update the stack to resemble the
image on the right. As part of this process, the eax register would be updated to
hold the value 0xFEDA8712. Then, the stack pointer, esp, would be incremented
by 4 to a value of 0x120.

As with the push instruction, pop merges a two-step process into a single
instruction. The following code is equivalent but explicitly performs each step:

;esp = 0x11C
mov eax, [esp]
add esp, 4
;esp = 0x120
;eax = 0xfeda8712

The Stack as a Scratch Pad

x86 has a limited number of registers, and it’s easy to run out. Often, some kind
of swap/scratch area is needed to temporarily store information that you’re
not done using yet. The stack provides a convenient location to temporarily
store values.

For example, consider the following code:

mov eax, 0xcafed00d
mov ebx, 0x00c0ffee
add eax, ebx
push eax ; save to free up eax
... ; do other things
pop eax ; retrieve saved eax

In this example, the push and pop instructions are used to temporarily
store the contents of eax on the stack. This frees up the register to be used in
other calculations. When the stored value is needed again, pop can be used to
return it to eax.

Table 7.3: Popping a variable from the stack

ADDRESS VALUE ADDRESS VALUE

0x11B 0x11B

0x11C(esp) 0x12 0x11C

0x11D 0x87 0x11D

0x11E 0xDA 0x11E

0x11F 0xFE 0x11F

0x120 0x11 0x120(esp) 0x11

0x121 0x22 0x121 0x22

0x122 0x33 0x122 0x33

 Chapter 7 ■ Functions and Control Flow 105

Using Pop Cautiously

Data is rarely deleted on a computer. For example, when a file is deleted in the
file system or a program releases a variable, the memory associated with it is
simply marked as available for other uses. The stored data is still present on
the disk.

The same is true of the stack in x86. When a value is popped from the stack,
it is copied to a register or memory location, but the value remains on the stack.
After the stack pointer is adjusted, the popped value is outside the valid range
of the stack.

After popping a value, it should be considered deallocated and no longer
safe to use. Any attempt to access data outside of the valid range of the stack
is dangerous. For example, no legitimate assembly instruction should include
[esp-...].

Consider the following example, which shows stack traces of various locations;
the relevant stack trace is indicated in the comments (e.g., ;(1)). Each comment
location shows the stack after that line has been executed, as shown in Table 7.4.

;(1) esp = 0x10C
push 0xbadc0de ; (2)
pop eax ;(3) eax = 0xbadc0de
push 0xc0ffee ;(4)

Table 7.4: Stack trace examples

(1) (2)

ADDRESS VALUE ADDRESS VALUE

0x1000 ?? 0x1000 ??

0x1004 ?? 0x1004 ??

0x1008 ?? 0x1008 (esp) 0xbadc0de

0x100c (esp) 0x11223344 0x100c 0x11223344

0x1010 0x55667788 0x1010 0x55667788

(3) (4)

ADDRESS VALUE ADDRESS VALUE

0x1000 ?? 0x1000 ??

0x1004 ?? 0x1004 ??

0x1008 0xbadc0de 0x1008 (esp) 0xc0ffee

0x100c (esp) 0x11223344 0x100c 0x11223344

0x1010 0x55667788 0x1010 0x55667788

106 Chapter 7 ■ Functions and Control Flow

Notice in stack trace 3, that 0xbadc0de has been popped off the stack, but it
is still there, until something else comes to overwrite it, as shown in stack state
4. Again, under legitimate conditions you do not want to rely on/use anything
above the currently allocated stack ([esp-..]), but this knowledge can in fact
be insightful for other, less legitimate purposes. Later examples either will no
longer list the content that is “unallocated” in the stack or will strike through
(example) the value to denote that it’s unallocated.

Function Calls and Stack Frames

Higher-level programming languages have the concept of functions, which are
chunks of code that can be called from other functions. x86 has the concept of
functions as well.

When a function is called, changes are made to the state of the stack. Under-
standing these changes is essential to understanding how the application works.

Functions in x86
x86’s call and ret instructions provide the ability to make functions similar to
higher-level programming languages.

call

The call instruction has the syntax call op, where op indicates the address of
the function being called. The argument op can be a register, label, or memory
address.

call eax ; branch to eax
call label ; branch to label
call 0x1000 ; branch to 0x1000

Like push and pop, call actually bundles multiple steps into a single operation.
First, it creates a return address by pushing the address of the next instruction
onto the stack. Then, it performs an unconditional jump to the code location
indicated by op.

ret

The ret instruction accepts no arguments. Its purpose is to return execution to
the calling function.

This is accomplished by a two-step process. First, ret pops the return address
saved by call off of the stack. Then, it performs an unconditional jump to that
address.

How x86 functions work

 Chapter 7 ■ Functions and Control Flow 107

With call and ret, it is possible to build functions directly in x86 or translate
them from other languages Consider the following code:

void a() {
}

void b() {
 a();
}

This code defines two functions, a and b, where b calls a. This code is equivalent
to the following in x86:

b:
 call a
 ret

a:
 ret

Table 7.5 illustrates how running this code would affect the stack. Assume
that these instructions are stored at the following locations in memory, with the
associated stack traces as marked in comments. Recall the stack shows the state
after that instruction has executed.

b:
 ;(1)
0x10000 call a ;(2)
0x10003 ret

a:
0x20012 ret ;(3)

The leftmost image in Table 7.5 shows the initial state of the stack. At this
point, esp points to address 0x9010, and eip has a value of 0x1000.

The middle image illustrates what happens when the call to a is executed.
At this point, the value of eip, which is now 0x10003, is pushed onto the stack.
Now, eip points to the first line of code in a, which has an address of 0x20012.

Once a returns, the original value of eip is popped off the stack, causing it to
point to the ret instruction in b at 0x10003. The stack pointer is updated as well
to point to address 0x9010. Note that the value 0x10003 remains in memory but
is now outside of the stack and should no longer be used or trusted.

Putting together this notion of the stack and functions, take a look at an
example. Consider the following set of function definitions:

void a() { int x; b(); }
void b() { int x; c(); }
void c() { int x; }

108 Chapter 7 ■ Functions and Control Flow

This begins with the a() function, which has a single local variable, x, and
calls the b function. Table 7.6 illustrates the structure of the stack once a has
been called. Note that a’s local data is allocated space and added to the stack.

When a is executed, it declares x and then calls b. This means the flow of exe-
cution will switch to run the code contained in b before returning to a.

To ensure that it returns to the correct location in a, the processor stores a
return address on the stack. This return address is the address of the instruction
following the call to b in a.

After a’s return address is placed on the stack, the processor stores b’s local
data there. Table 7.7 shows the state of the stack before the processor executes
the first instruction in b.

Table 7.5: Function calls and the stack

(1) (2) (3)

ADDRESS VALUE ADDRESS VALUE ADDRESS VALUE

0x9000 ?? 0x9000 ?? 0x9000 ??

0x9004 ?? 0x9004 ?? 0x9004 ??

0x9008 ?? 0x9008 ?? 0x9008 ??

0x900c ?? 0x900c 0x10003 0x900c 0x10003

0x9010 ?? 0x9010 ?? 0x9010 ??

REGISTER VALUE REGISTER VALUE REGISTER VALUE

esp 0x9010 esp 0x900c esp 0x9010

eip 0x10000 eip 0x20012 eip 0x10003

Table 7.6: Program stack after calling a

STACK

a's local data

 Chapter 7 ■ Functions and Control Flow 109

Like a, b will declare its local variables and then make a call to another
function, c. When executing this call, a return address for b will be placed on
the stack as well as the local variables of the called function. Once this setup
for c is complete, the stack will resemble Table 7.8.

In c, the local variable x is declared, and then the function terminates. When
the processor is done in c, code flow needs to return to the calling function b.

At this point, c’s local data is at the top of the stack but is no longer needed.
The processor can pop this data from the stack, changing the stack pointer to
indicate b’s return address.

The processor can then pop this return address off of the stack, storing it in
eip and updating the stack pointer through the ret instruction. This enables
the program to return to b and resume executing any code following its call
to c. At this point, the stack returns to the state shown in Table 7.7.

Table 7.7: Program stack after calling b

STACK

b'local data

a's return address

a's local data

Table 7.8: Program stack after calling c

STACK

c' local data

b'sreturn address

b's local data

a's return address

a's local data

110 Chapter 7 ■ Functions and Control Flow

The call to c is the last instruction in b, so it will immediately return as well.
Like the return from c, this involves popping local variables off of the stack
and updating eip by popping a’s return address off of the stack and into eip
(via ret). Once this is complete, the stack will resemble Table 7.6.

After this return from b, a will also return. a’s local data will be popped off
of the stack. Then, the eip register will be updated based on the return address
of the calling function, which occurred prior to our analysis and is not shown
in Table 7.6, and execution will resume within that function.

Stack Analysis
As functions are called and return from calls, they have an impact on the program
stack. For example, consider the following code:

void a() { }
void b() { }
void c() { a(); b(); }

This code defines three functions, a, b, and c, and c calls both of the other two.
When a function is running or is within the call stack of the running function,

its return address is in the stack. For example, when a is running, the return
addresses for a and c are on the stack. Similarly, when b is running, the return
addresses for b and c are on the stack.

Examination of the return addresses stored on the stack provides visibility
into how a particular point in the program was reached. Each function in the
call stack will have its return address local variables and scratch data visible
in the stack.

This practice is called unwinding the stack. In gdb, the info stack command
will show the current state of the stack.

Calling Conventions
The call and ret instructions make it possible to create functions in assembly.
However, with only call and ret, these functions must be self-contained without
the ability to pass data between functions.

In higher-level programming languages, functions commonly have param-
eters or arguments, which are variables that are passed to a function by the
calling function. However, machine code doesn’t have the concept of parame-
ters; there are only registers and memory.

x86 has all of the tools necessary to create parameters. Higher-level program-
ming languages that use parameters are translated into assembly. It’s the respon-
sibility of the programmer or the compiler to choose how to use these tools.

 Chapter 7 ■ Functions and Control Flow 111

Why Conventions Are Necessary

With registers, the stack, and even memory locations, x86 has the ability to pass
values from one function to another. Parameters can be stored in registers or
pushed and popped from the stack.

However, communication or agreements between functions is necessary if
they plan to use parameters, registers, or the stack in a consistent way. If the
calling function is using certain locations to pass parameters, the callee needs to
know which locations are used for which values. The same is true if the callee
is returning data to the caller.

void caller() { ... callee()} //nomenclature definition

Also, if the caller is using a register to store its internal values, the callee needs
to know not to overwrite those values. This is especially a concern if the callee
uses operations like mul that modify registers but are easy to miss.

Within a small program, the developer could design their code to contain that
knowledge. If function a takes three parameters, the developer could create a
scheme that passes them via registers or the stack. Similarly, the struct needed
by function b could be passed by allocating a particular location in memory.

However, while this approach may work on a small scale, it is unscalable and
prone to error. An oversight could result in vital data being accidentally clob-
bered by a mul operation. Also, such an ad hoc scheme makes it more difficult
to work with teams of developers.

Introduction to Calling Conventions

Calling conventions are designed to make it easier to pass data between functions
by defining the rules of engagement between functions. They are part of the
application binary interface (ABI), which is the lowest-level definition of how
pieces of code interact.

A calling convention must define a few rules, including the following:

 ■ Parameter location: Where will parameters be passed from the caller to
the callee (stack versus registers)?

 ■ Parameter ordering: How will parameters be organized, on the stack or
into registers?

 ■ Stack cleanup: If the stack is used, which function is responsible for
removing values from the stack (caller versus callee cleanup)?

 ■ Register access: Which registers can the callee use without needing to
back up their previous values and restore them before returning?

112 Chapter 7 ■ Functions and Control Flow

 ■ Return values: Where and how will values be returned from the callee to
the caller?

Calling conventions can vary based on different factors, including the following:

 ■ Architecture (x86 versus ARM)

 ■ Operating system (UN*X versus Windows)

 ■ Programming language (C versus Java)

 ■ Even compiler (GCC versus Microsoft)

In the early days of programming, standards didn’t really exist. As a result,
programs couldn’t work together if their developers didn’t agree on a calling
convention.

Initially, there were many different companies, each with its own conventions.
Over time, these have been whittled down to a handful of popular standards,
including the following:

 ■ cdecl

 ■ syscall

 ■ optlink

 ■ pascall

 ■ register

 ■ stdcall

 ■ fastcall

 ■ safecall

 ■ thiscall

cdecl
cdecl (“see deckel”) is short for “C declaration” and is one of the most common
calling conventions on the x86 architecture. While it originated with C, cdecl
is used for a variety of different programming languages and architectures. It
is also a useful standard when writing assembly by hand.

cdecl defines the following rules:

 ■ Stack-based parameters: Arguments are pushed from right to left onto
the stack to be passed to the callee.

 ■ Caller cleanup: The calling function is responsible for removing argu-
ments from the stack once the callee returns.

 Chapter 7 ■ Functions and Control Flow 113

 ■ Return value: The eax register is used to hold a function’s return value.

 ■ Available registers: The callee is free to modify eax, ecx, and edx. The
caller should save any needed values in these registers before making the
call. The callee should save the values of other registers before using them
and restore them before returning.

Consider the instruction int s = add(1,2). Using the cdecl standard, this
would translate to the following x86 assembly code:

; Save regs we need to keep according to cdecl.
; Optional if we don't intend to modify these registers.
push eax
push ecx
push edx
; Push parameters from right to left. The original
; code was add(1,2), so left to right is 2, then 1
push 2
push 1

; Call add.
call add

; Remove parameters from the stack. We pushed 2x 4- byte values
; we can either do 2 pops, or add 8 back to the stack
add esp, 8

; Save the return value into eax (where cdecl says return values go)
mov [s], eax

; Restore the saved registers, remember its last
; in first out, so we pushed edx last, meaning it is the first to pop
pop edx
pop ecx
pop eax

Saving Registers

In cdecl, functions are free to modify eax, ecx, and edx without saving their
values. Therefore, the following function, f, is valid under the standard.

f: mov ecx, 0xd15ea5e
 mov edx, 0xfee1dead
 lea eax, [ecx + edx]
 ret

114 Chapter 7 ■ Functions and Control Flow

However, any other registers used by the callee must have their values stored
before they are modified and the originals restored before returning.

f: push ebx
 push ebp
 push esi
 mov ebp, 0xd15ea5e
 mov ebx, 0xfee1dead
 lea esi, [ebp + ebx]
 pop esi
 pop ebp
 pop ebx
 ret

This function uses ebx, ebp, and esi, so it pushes their previous values onto the
stack before using the registers and pops these values back into the registers
before returning.

With cdecl, a calling function knows which registers’ values it can trust after
calling another function. The callee is allowed to modify the values of eax, ecx,
and edx at will, so the caller should save these registers’ values if it wants to
use them later. However, all of the other registers’ values should be preserved
by the callee, so there is no need to save them before making a call.

For example, consider the following code block:

g:
 mov ebx, 0xd15ea5e
 mov ecx, 0xfee1dead
 call f

After the call to f, function g can rely on ebx retaining the value 0xd15ea5e.
However, it cannot assume that ecx will still have the value 0xfee1dead.

Return Values

In higher-level programming languages, functions commonly use return values
to pass information to their callers. For example, a function may be designed to
return 0 upon successful completion or an error code if something went wrong.
For example, the following function returns a value of 1 upon completion:

int f()
{
 return 1;
}

When using the cdecl calling convention, this return value is stored in the
eax register. The following x86 code is equivalent to the previous function f:

f:
 mov eax, 1
 ret

 Chapter 7 ■ Functions and Control Flow 115

Functions can be of varying types and have different return values that match
these types. For example, the following function is designed to return a char*
pointer and defaults to a NULL pointer:

char* f()
{
 return NULL;
}

In x86, a register can be used as a pointer. The following x86 code uses a value
of 0 to represent the NULL pointer equivalent; eax could also be used to indicate
the location of a char array in memory.

f:
 mov eax, 0
 ret

Accessing Parameters

The cdecl standard uses the stack to pass parameters to a function. Some things
to keep in mind when attempting to access parameters include the following:

 ■ The top of the stack (last value pushed) is [esp].

 ■ The stack grows down (toward lower addresses).

 ■ The call instruction pushes the return address onto the stack.

 ■ The caller pushed arguments right to left.

 ■ The callee’s return value should be stored in eax.

Keeping these factors in mind, consider how a call to the following function
would be implemented in x86:

int add (int x, int y)
{
 return x+y;
}

In x86, the equivalent of this would be the following:

f:
 push 1 ; y
 push 2 ; x
 call add
 mov [s], eax ;save the return value to memory
 pop eax
 pop eax
 ret

116 Chapter 7 ■ Functions and Control Flow

Table 7.9: Stack in add function

ADDRESS VALUE

0xeff0

0xeff4

0xeff8 (esp) (Return address)

0xeffc 2

0xf000 1

; int add(int x, int y) { return x+y; }
add:
 mov eax, [esp+4] ; retrieve x from stack
 mov edx, [esp+8] ; retrieve y from stack
 add eax, edx
 ret

When a function is called, it has an effect on the current program stack.
Table 7.9 shows the state of the stack within the add function.

While it’s possible to access parameters from [esp], this approach can run
into problems. Consider how the following instructions within add affect the
value of esp:

; int f(int x);
f:
 mov eax, [esp+4] ; x is at [esp+4]
 push ebx ; save ebx
 mov ebx, [esp+8] ; x is now at [esp+8]
 ...

As parameters are popped from the stack by the callee, the location of the top
of the stack changes. As a result, the locations of parameters relative to esp
change as well.

Stack Frames
The value of esp changes too frequently to be a useful frame of reference for the
locations of variables within the stack. Each time a value is pushed or popped,
the value of esp and the relative locations of the other stack variables change.

This is where the other stack register ebp (also known as the base pointer
or frame pointer) comes into play. The ebp register points to the bottom of the
current stack frame, which is the bottom of a section of memory on the stack
used by a particular function.

 Chapter 7 ■ Functions and Control Flow 117

Prologues and Epilogues

x86 functions commonly start and end with chunks of boilerplate code. The
purpose of this code is to set up and tear down the function’s stack frame.

Setting Up a Stack Frame

The function prologue or preamble sets up the stack frame and is found at the
very beginning of the function. The prologue performs two functions.

 ■ Save the previous stack frame with push ebp.

 ■ Set the new stack frame with mov ebp, esp.

These instructions appear at the very beginning of a function. Table 7.10
shows the effect of each on the stack.

;(1)
push ebp ;(2)
move ebp, esp ; (3)
push 0x11223344 ;(4)

(3) (4)

ADDRESS VALUE ADDRESS VALUE

0xefe8 ?? 0xefe8 ??

0xeff0 ?? 0xeff0 (esp) 0x11223344

0xeff4 (esp, ebp) Old ebp 0xeff4 (ebp) Old ebp

0xeff8 (return
address)

0xeff8 (return
address)

0xeffc 2 0xeffc 2

0xf000 1 0xf000 1

Table 7.10: Effects of function prologue on stack

(1) (2)

ADDRESS VALUE ADDRESS VALUE

0xefe8 ?? 0xefe8 ??

0xeff0 ?? 0xeff0 ??

0xeff4 ?? 0xeff4 (esp) Old ebp

0xeff8 (esp) (return
address)

0xeff8 (return
address)

0xeffc 2 0xeffc 2

0xf000 1 0xf000 1

118 Chapter 7 ■ Functions and Control Flow

The first table shows the stack before the function begins. At this point, the
function parameters are pushed to the stack (from right to left) as well as the
caller’s return address.

When the push ebp instruction executes, the previous function’s base pointer
is stored on the stack. The resulting stack is shown in the second table.

The third table shows the stack after the mov ebp, esp instruction is executed.
While the stack itself is not updated, the new ebp points to the return address
of the calling function, same as esp.

After these instructions are executed, the callee can push local variables to
the stack. While this will modify the value of esp, the value of ebp will stay
constant (table four). This makes it possible to access parameters and local var-
iables relative to a fixed point, ebp, rather than the more mutable esp.

Tearing Down a Stack Frame

Creating a new stack frame for the current function means you’ve lost the calling
function’s stack frame. Before the function returns, it needs to undo the changes
that it’s made and restore the caller’s stack frame.

The function epilogue appears at the end of the function and accomplishes
this process. It consists of the following three instructions:

mov esp, ebp
pop ebp
ret

The first step of this process is removing any data that has been added to
the stack. Since data isn’t actually deleted from memory, this simply involves
changing the stack pointer with the instruction mov esp, ebp. This operation
would restore the state of the stack as in Table 7.11.

; function body (1)
mov esp, ebp ;(2)
pop ebp ; (3)

Next, the value of the base pointer should be restored to that of the calling
function. Recall in the preamble this was pushed onto the stack, so this is accom-
plished via the instruction pop ebp, which restores the stack to the original state.
At this point, the stack is in the proper state to return to the calling function.

While it’s possible to perform this teardown via these two instructions, x86
offers an alternative option. The leave instruction is equivalent to the follow-
ing two instructions:

mov esp, ebp
pop ebp

 Chapter 7 ■ Functions and Control Flow 119

Accessing Parameters

Stack frames are designed to make it easier to access parameters and other
values on the stack from within a function. Using the static ebp as a reference
simplifies the process of determining where a particular value is on the stack.
For example, Table 7.12 shows the locations of certain values on the stack for

Table 7.12: Stack locations for common values

LOCATION VALUE

[ebp + 0] Previous frame pointer

[ebp + 4] Function return address

[ebp + 8] First parameter

[ebp + 12] Second parameter

[ebp + 16] Third parameter

... . . .

Table 7.11: Effects of function epilogue on stack

(1) (2)

ADDRESS VALUE ADDRESS VALUE

0xefe8 (esp) 0x3325d321 0xefe8 0x3325d321

0xeff0 0x11223344 0xeff0 0x11223344

0xeff4 (ebp) Old ebp 0xeff4 (ebp,
esp)

Old ebp

0xeff8 (return
address)

0xeff8 (return
address)

0xeffc 2 0xeffc 2

0xf000 1 0xf000 1

(3)

ADDRESS VALUE

0xefe8 0x3325d321

0xeff0 0x11223344

0xeff4 (esp) Old ebp

0xeff8 (return
address)

0xeffc 2

0xf000 1

120 Chapter 7 ■ Functions and Control Flow

any function using the cdecl convention. Since ebp does not move during a
function, these relationships and offsets will always be the same. This means if
the caller passed in a variable, the first one will always be at ebp+8, the second
will always be at ebp+12, etc.

The following example shows the build-up and usage of function parameters.
As with all of these stack examples, remember that each stack is shown after
the instruction has executed.

f:
 push 1 ; y
 push 2 ; x ;(1)
 call add
 mov [s], eax
 pop eax
 pop eax
 ret

; int add(int x, int y) { return x+y; }
add:
 ; (2)
 push ebp
 mov ebp, esp ;(3)
 mov eax, [ebp+8] ; retrieve x from stack
 mov edx, [ebp+12] ; retrieve y from stack
 add eax, edx
 mov esp, ebp
 pop ebp
 ret

Table 7.13 shows the stack contents for points (1), (2), and (3) in the pre-
ceding code.

Once location 3 is reached, based on your knowledge of cdecl and the stack
frame, you know with confidence the first parameter, x, will be at location ebp+8

Table 7.13: Stack content at points 1, 2, and 3 in the program

(1) (2) (3)

ADDRESS VALUE ADDRESS VALUE ADDRESS VALUE

0xeff4 ?? 0xeff4 0xeff4
(esp,
ebp)

Old
ebp

0xeff8 ?? 0xeff8
(esp)

return
address

0xeff8 return
address

0xeffc
(esp)

2 0xeffc 2 0xeffc 2

0xf000 1 0xf000 1 0xf000 1

 Chapter 7 ■ Functions and Control Flow 121

and have a value of 2. The second parameter, y, will be at location ebp+12 and
have a value of 1.

Local Variables

A function’s local variables are stored on the stack above the previous frame
pointer (at lower addresses). After the stack frame has been set up, space can
be allocated for local variables simply by subtracting the required amount of
space from esp. This allocation will automatically be undone in the function
epilogue when the stack pointer is reset based on the base pointer.

For example, consider the following function:

void one_up(int x)
{
 int y = x + 1;
}

In addition to its incoming argument, x, it also defines a local variable, y, that
will be stored on the stack. The following code shows how this function would
look after being translated into x86:

one_up:
 push ebp
 mov ebp, esp
 sub esp, 4 ; allocate space for local y (4 bytes)
 mov eax, [ebp+8] ; load parameter x
 inc eax ; x + 1
 mov [ebp- 4], eax ; save local y
 ;stack shown here
 mov esp, ebp
 pop ebp
 ret

This program’s stack frame is shown in Table 7.14. Note that while esp now
points to 0xeff4, the value of ebp remains the same (pointing to the caller’s
saved ebp) after local variables are allocated on the stack. Both parameters and
local variables can be easily accessed relative to ebp.

Table 7.14: Stack frame of one_up program

ADDRESS VALUE

0xeff4 (esp) y

0xeff8 (ebp) Old ebp

0xeffc Ret address

0xf000 x

122 Chapter 7 ■ Functions and Control Flow

As with parameters, cdecl ensures that local variables are stored at consis-
tent locations across different functions. Table 7.15 shows the locations of local
variables relative to ebp. In reverse engineering, knowledge of ebp becomes
incredibly powerful.

 T I P Understanding that ebp minus anything is referencing a local variable,
something allocated inside of the function, while access to ebp plus anything is access-
ing information provided to the function by the caller, can help you quickly spot inter-
esting pieces of code or identify critical functionality that could be manipulated, say, by
input to the program.

Shortcuts

It’s possible to individually push each parameter or local variable to the stack;
each push updates the stack pointer and moves the value into place.

Instead, a common route compilers take is to allocate space all at once before
moving values into place. For example, the following instructions are less
common to find in compiled code:

push 1
push 2

Instead, these instructions are more likely to be assembled to the following:

sub esp, 8 ; allocate 8 bytes on the stack
mov dword [esp+4], 1 ; put 1 on the stack
mov dword [esp], 2 ; put 2 on the stack

Stack Alignment

Some compilers will enforce 32-byte stack alignment when entering a function.
This means seeking for the memory address of the stack pointer to be evenly
divisible by 32. This was historically more efficient for systems to fetch memory
on 32 byte-aligned bounds. This efficiency improvement may not still exist, but
you will still see compilers occasionally doing things to maintain stack alignment.

Table 7.15: Stack locations for local variables

LOCATION VALUE

[ebp - 4] First local variable

[ebp - 8] Second local variable

[ebp - 12] Third local variable

... . . .

 Chapter 7 ■ Functions and Control Flow 123

How you might see this manifest is, when allocating space for local variables,
they may allocate excess space to maintain this alignment.

This means it is common for unused space to exist within a function’s
stack frame. When reversing, don’t get hung up on excess space because it is
completely normal. When writing your own code, this isn’t something you
need to manually do, but the goal of this book is to equip you to recognize this
in code and know it’s something you can mostly ignore.

The Big Picture
When a function is called, it makes several changes to the program stack. To see
all of these changes in one place, consider the following program:

void hack(...)
{
 ...
}

void drink(...)
{
 ...
 hack(...);
 ...
}

Each of the two functions in this program may have zero or more parame-
ters and local variables. Figure 7.3 shows the structure of the stack frames for
each function.

Figure 7.3: Stack frames for hack and drink functions

124 Chapter 7 ■ Functions and Control Flow

Things to Memorize
x86 assembly programs can be complex. To be effective at x86 reverse engi-
neering, it is vital that you memorize certain things.

The first of these is the structure of a function’s stack frame. Table 7.16 shows
the complete stack frame, including parameters, return addresses, local vari-
ables, and scratch space.

Another important thing to memorize is the difference between boilerplate
and complete function prologues and epilogues. Table 7.17 shows how a boiler-
plate prologue differs from one that includes stack allocations for local variables.

Table 7.16: Complete function stack frame

STACK

...

[ebp— 12] or [ebp-0xC] Third local variable

[ebp-8] Second local variable

[ebp-4] First local variable

[ebp] Previous frame pointer

[ebp+4] Function return address

[ebp+8] First parameter

[ebp+12] or [ebp+0xC] Second parameter

[ebp+16] or [ebp+0xF] Third parameter

...

Table 7.17: Two types of prologues

BOILERPLATE PROLOGUE COMPLETE PROLOGUE

push ebp
 ; save stack frame

mov ebp, esp
 ; start new frame

push ebp
 ; save stack frame

mov ebp, esp ; start new frame

sub esp, 20
 ; allocate 5 4 byte locals

push ebx
 ; save modified regs

push esi

(etc)

 Chapter 7 ■ Functions and Control Flow 125

The function epilogue reverses the effects of the function prologue. Table 7.18
shows the equivalent epilogues for each of these prologues.

Summary

This chapter explored vital concepts for reversing and cracking applications.
Before moving on, be sure that you have a firm grasp of how control flow can work
within an applications and the ins and outs of functions and their stack frames.

Table 7.18: Two types of epilogues

BOILERPLATE EPILOGUE COMPLETE EPILOGUE

mov esp, ebp ; discard locals

pop ebp ; restore frame

ret ; return

(etc)

pop esi
 ; restore modified regs

pop ebx

mov esp, ebp ; discard locals

pop ebp ; restore frame

ret ; return

C H A P T E R

127

8

For many higher- level programming languages, compilation is a vital part of
the process of converting an application from source code to machine- readable
binary code. During this process, a compiler may make minor changes to the
code to make it as fast and efficient as possible.

The process of compiling and optimizing an application can make it more
difficult to reverse engineer. This chapter describes how to find a starting point
for reversing an application and some of the common actions that compilers
take that can complicate reverse engineering.

Finding Starting Code

When code is compiled, the compiler introduces a large amount of boilerplate
that is executed before the actual application code is ever called. When reverse
engineering, one of the art forms you’ll need to master is how to skip over this
and focus on the target code, not the boilerplate setup. However, identifying
the entry point into the target code can be complex.

When reversing someone else’s code, it’s unlikely that the code will be com-
piled with debugging symbols. This means function and variable names and
other information that could provide a hint regarding the actual code’s entry
point have been stripped from the application. Figure 8.1 shows what opening
a file without debugging symbols looks like in gdb.

Compilers and Optimizers

128 Chapter 8 ■ Compilers and Optimizers

This lack of debugging symbols creates a major challenge because applica-
tions written in higher languages rather than pure assembly include much more
overhead and compiler- generated symbols. The following is sample output from
an info files command in gdb showing the number of different sections that
exist in a simple executable:

Entry point: 0x80483a0
0x08048154 - 0x08048167 is .interp
0x08048168 - 0x08048188 is .note.ABI- tag
0x08048188 - 0x080481ac is .note.gnu.build- id
0x080481ac - 0x080481cc is .gnu.hash
0x080481cc - 0x0804823c is .dynsym
0x0804823c - 0x080482a6 is .dynstr
0x080482a6 - 0x080482b4 is .gnu.version
0x080482b4 - 0x080482e4 is .gnu.version_r
0x080482e4 - 0x080482ec is .rel.dyn
0x080482ec - 0x08048314 is .rel.plt
0x08048314 - 0x08048338 is .init
0x08048340 - 0x080483a0 is .plt
0x080483a0 - 0x08048648 is .text
0x08048648 - 0x0804865d is .fini
0x08048660 - 0x080486a9 is .rodata
0x080486ac - 0x080486f0 is .eh_frame_hdr
0x080486f0 - 0x080487f4 is .eh_frame
0x08049f08 - 0x08049f0c is .init_array
0x08049f0c - 0x08049f10 is .fini_array
0x08049f10 - 0x08049f14 is .jcr
0x08049f14 - 0x08049ffc is .dynamic
0x08049ffc - 0x0804a000 is .got
0x0804a000 - 0x0804a020 is .got.plt
0x0804a020 - 0x0804a028 is .data
0x0804a028 - 0x0804a02c is .bss
0xf7fdc114 - 0xf7fdc138 is .note.gnu.build- id in /lib/ld- linux.so.2
0xf7fdc138 - 0xf7fdc1f4 is .hash in /lib/ld- linux.so.2
0xf7fdc1f4 - 0xf7fdc2d4 is .gnu.hash in /lib/ld- linux.so.2
0xf7fdc2d4 - 0xf7fdc494 is .dynsym in /lib/ld- linux.so.2
0xf7fdc494 - 0xf7fdc612 is .dynstr in /lib/ld- linux.so.2
0xf7fdc612 - 0xf7fdc64a is .gnu.version in /lib/ld- linux.so.2
0xf7fdc64c - 0xf7fdc714 is .gnu.version_d in /lib/ld- linux.so.2

Figure 8.1: Application without debugging symbols in gdb

 Chapter 8 ■ Compilers and Optimizers 129

0xf7fdc714 - 0xf7fdc77c is .rel.dyn in /lib/ld- linux.so.2
0xf7fdc77c - 0xf7fdc7ac is .rel.plt in /lib/ld- linux.so.2
0xf7fdc7b0 - 0xf7fdc820 is .plt in /lib/ld- linux.so.2
0xf7fdc820 - 0xf7ff4baf is .text in /lib/ld- linux.so.2
0xf7ff4bc0 - 0xf7ff8a60 is .rodata in /lib/ld- linux.so.2
0xf7ff8a60 - 0xf7ff90ec is .eh_frame_hdr in /lib/ld- linux.so.2
0xf7ff90ec - 0xf7ffb654 is .eh_frame in /lib/ld- linux.so.2
0xf7ffccc0 - 0xf7ffcf3c is .data.rel.ro in /lib/ld- linux.so.2
0xf7ffcf3c - 0xf7ffcff4 is .dynamic in /lib/ld- linux.so.2

This list can get even longer in more complex binaries, with numerous depen-
dencies and libraries. Looking at this output, you know that the .text section
of the executable is located at address 0x080483a0. Disassembling the code at
this location can provide a hint to the entry point of the target code. Figure 8.2
shows the result of disassembling the code at this location in gdb.

When searching for the entry point to the target code, this can depend on the
exact compiler and language used to build. You’ll see an example for finding
starting code in a C/C++ application, as that’s still one of the most common
languages used today. To begin with, look for a call to __libc_start_main.
The address of the target code will be passed as a parameter to this function,
and given what you know of calling conventions, you know that means we’re
looking for what’s put on the stack before the call.

In Figure 8.2, the address 0x804848c is pushed onto the stack right before the
call to __libc_start_main, making it a parameter to the function. Therefore,
the target code begins at that address. Figure 8.3 shows a disassembly of the
main function, including calls to libc.

Figure 8.2: .text disassembly in gdb

130 Chapter 8 ■ Compilers and Optimizers

Compilers

Compilers take code and translate it to machine code that the processor can
read. There are various things that compilers can do to affect reverse engi-
neering, both intentionally and unintentionally. This section focuses on unin-
tentional changes; intentional techniques such as obfuscation will be covered
in Chapter 12, “Defense.”

Optimization
Compilers can be configured to optimize code based on various metrics, including
speed and disk size, or not optimized at all. The code can look very different
based on whether optimizations are applied.

Consider the following code sample. This code implements a simple if state-
ment with two conditions.

int main(int argc, char* argv[])
{
 if (argc >= 3 && argc <= 8)
 {
 printf("valid number of args\n");
 }
}

Figure 8.4 shows what the code looks like in a disassembler (more on this in
Chapter 11, “Patching and Advanced Tooling,” don’t worry) when compiled
with no optimizations. Note that the checks for the two conditions comparing
the values to 2 and 8 are clearly visible in the code.

Figure 8.3: Main function disassembly in gdb

 Chapter 8 ■ Compilers and Optimizers 131

Figure 8.5 shows the same code when optimized for speed and space.
The comparisons with the values 2 and 8 are no longer visible in the code,
and the code no longer looks like an if statement with two conditions.

Figure 8.6 shows the code optimized solely based on disk space. Again, the
two comparisons are missing.

If you examine the code, you’ll see that the code checks if (argc- 3) > 5. If
argc < 3, then subtracting 3 will cause an underflow and cause the value in
eax to be a large positive number. If argc > 8, then argc- 3 > 5. In both of these
cases, the result will be greater than 5, so the optimized statement is equivalent
to the original test. Compiler optimizations result in equivalent logic, but they
can make code much more difficult to read and reason about.

Most compilers have options for setting the level of optimization. While you’re
learning, if you’re having difficulty reversing an application you’ve written, try
disabling optimizations when compiling. On the flip side, if you want to make
your code more difficult to reverse engineer, compiler optimizations are an easy
and beneficial way to do so.

Figure 8.4: Unoptimized code in a disassembler

132 Chapter 8 ■ Compilers and Optimizers

Stripping
Stripping a binary means removing all information that is not necessary for the
code to execute, including the symbol table. An unstripped binary retains its
symbol table, while a stripped one does not.

Symbols can be extremely useful for debugging an application. For example,
consider the following code:

// Declare an external function
extern double bar(double x);

// Define a public function
double foo(int count)
{
 double sum = 0.0;

 // Sum all the values bar(1) to bar(count)
 for (int i = 1; i <= count; i++)

Figure 8.5: Speed and space- optimized code in a disassembler

 Chapter 8 ■ Compilers and Optimizers 133

 sum += bar((double) i);
 return sum;
}

If this code is parsed by a compiler, it will at least contain the symbol table
entries shown in Figure 8.7. Symbols are so useful in debugging that Microsoft
allows you to download symbols for their applications in case you need to trou-
bleshoot! This additional information can be invaluable for understanding the
intent behind an application.

Figure 8.6: Space- optimized code in a disassembler

Figure 8.7: Application debugging symbols

134 Chapter 8 ■ Compilers and Optimizers

If a file is stripped, it will show that no debugging symbols are found when
opened in gdb, as shown in Figure 8.1. These files are much more difficult to
reverse engineer.

Symbols can be stripped from an application in a few different ways. One
option is to use compiler flags, such as gcc –fno- rtti –s. Another option is to
use post- build stripping tools, such as strip in Linux.

Symbols make it easier for an attacker to reverse engineer an application
because they can help with locating areas of interest and understanding the
intent behind certain variables. However, there are legitimate reasons to leave an
application unstripped. For example, symbols help with creating crash reports
and error logs and support legitimate debugging to fix client errors. While
learning, if you are writing your own code and compiling it to practice with, start
by making sure you’re building with symbols left in. As you progress in your
skills, then remove symbols. When reverse engineering someone else’s code, it’s
highly unlikely you will find symbols have been left in it, but it does happen!

Linking
Applications are rarely written in isolation anymore. What’s more common is
to include libraries that provide core pieces of capabilities (such as communica-
tions, logging, drawing, etc.). When compiling an application that uses libraries,
there are two options for how those get built. These libraries can be statically or
dynamically linked into the application. Each has its benefits and drawbacks
from a software cracking perspective.

Static Linking

With static linking, libraries are built into the application itself. This improves
the speed of execution because the target addresses of any calls to the library
are built into it at compile time. Also, statically linked applications are more
portable because they have fewer dependencies on the environment.

However, static linking also has its downsides. Statically linked applications
are larger because the entire library is built into the executable, even if you use
only one function from a large library. Additionally, any updates to the library
require recompilation of the applications using them.

The file bloat caused by static linking can be significant for programs. For
example, as shown in Figure 8.8, even a simple one- line “hello world” program
will link dozens of libraries.

Dynamic Linking

Dynamic linking is the other option and the default choice for many compilers.
With dynamic linking, the required libraries are located on the system at runtime.

 Chapter 8 ■ Compilers and Optimizers 135

If a library is not already loaded into system memory, the library must be found
on the system and loaded into the shared library memory; however, common
libraries are likely already loaded and available for use.

Dynamic linking reduces application size and eliminates the need to recom-
pile an application after a library update if the update is backward compatible.
Additionally, dynamically linked applications can be faster at load time if the
libraries that they use are already loaded into memory.

However, dynamically linked applications depend on the libraries that they
need being installed on the system and can be slower than statically linked ones
(if dependencies are not already loaded and need to be located and loaded). In
addition to the need to load any libraries not already in memory, dynamically
linked applications need to find the address of called functions at runtime. This
involves searching the shared memory space for the library and may require a
great deal of memory paging.

Security Impacts of Linking

The choice of whether to use static or dynamic linking depends on the devel-
oper or the compiler. But putting your software cracking hats on, both options
have their security implications.

Reverse engineers typically prefer that an application be statically linked. Static
linking makes it easier to determine the exact load address of shared library
functions, which is useful when crafting exploits. It means you can leverage
code in the shared libraries to perform your exploitation, and that code will be
at a predictable location inside of your binary at runtime. Leveraging a library
that is linked dynamically is possible, but it is much more difficult because of the

Figure 8.8: Linked libraries in “hello world” program

136 Chapter 8 ■ Compilers and Optimizers

need to search for the desired library in the shared library memory and locate
its address every single time, as it will move and be unpredictable.

Crackers, on the other hand, tend to prefer dynamically linked libraries.
Dynamic linking results in much less code to sift through, and crackers are
interested solely in an application’s custom code, not the shared library code.

Summary

The process of compiling and optimizing an application can make it much more
difficult to reverse engineer even if the compiler isn’t intentionally obfuscating
it. However, like any anti- reversing protection, this can only slow down the
process since no software is uncrackable.

C H A P T E R

137

9

Up until this point, the focus of this book has been on understanding how the
guts of computers work. This is essential to being an effective software cracker.

Now that you have the foundation, the focus shifts to the art of software
cracking. To experiment and practice cracking, you’ll work with a variety of
targets:

 ■ Real software: Software taken from the real world. When analyzing real
software, you must take into account copyright law to ensure no copyright
violations.

 ■ Manufactured examples: Applications written for this book to illustrate
specific concepts.

 ■ crackmes: Small crackable programs written by other software crackers
to demonstrate an idea and challenge others.

crackmes like those used in this course are manufactured examples that pro-
vide a few benefits to an aspiring cracker. In general, they are designed to be
solvable, legal to crack, and safe to run in a debugger.

crackmes are also often labeled based on their focus, level of expertise, etc.
As a result, you can specifically seek out challenge problems suited to your
interests and skill level (i.e., advanced C cracker versus beginner Java cracker).

Reverse Engineering: Tools and
Strategies

138 Chapter 9 ■ Reverse Engineering: Tools and Strategies

Lab: RE Bingo

This lab provides hands-on experience in reversing code that has been built
(and obfuscated) by a compiler.

Labs and all associated instructions can be found in their corresponding
folder here:

https://github.com/DazzleCatDuo/

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab RE Bingo and follow the provided instructions.

Skills
This lab uses objdump to practice identifying control flow constructs and com-
piler settings when reversing. Some of the key skills being tested include the
following:

 ■ Reverse engineering x86

 ■ Control flow constructs

 ■ Impact of compiler settings

Takeaways
Quickly identifying control flow constructs can massively speed up reverse
engineering. They provide insights into the logic of an application and make it
more readable and comprehensible.

However, compiler configuration has a significant impact on the speed of
reversing. For example, stripping and optimizing, in general, slow things down.

In larger and more complex programs, automating some reverse engineering
is often necessary. It is common to write custom tools for a specific target.
Unpacking, deobfuscating, and circumventing anti-debug checks are common
tasks for automation.

Basic REconnaissance

As a software cracker, these are the most common situation that you’ll face:

 ■ You want to crack a program.

 ■ You have no source code.

 ■ You have an executable.

In this situation, you need a means of quickly assessing the target executable
and finding a starting point for your analysis. Some of the most commonly used

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

 Chapter 9 ■ Reverse Engineering: Tools and Strategies 139

initial tools for reverse engineers are objdump, strace, ltrace, and strings.
You’ll see more advanced tools as you progress through the book, but as these
are some of the most foundational, they’re a good starting point.

objdump
Object Dump (objdump) is a Linux-based tool for dumping the disassembly of
any program. As shown in Figure 9.1, it has numerous options. The most impor-
tant ones for quick reverse engineering include the following:

 ■ -d: Instructs objdump to disassemble the content of all sections

 ■ -Mintel: Tells objdump to display assembly in Intel syntax (as opposed
to AT&T)

For example, to disassemble an application named appname, use the command
objdump –d –Mintel appname.

Figure 9.2 shows the output from running objdump on a sample application.
Note that objdump will display memory locations, function names, x86 machine
code, and x86 assembly.

Figure 9.1: objump options

Figure 9.2: Sample objdump output

140 Chapter 9 ■ Reverse Engineering: Tools and Strategies

strace and ltrace
strace and ltrace provide the ability to monitor library (ltrace) and system
(strace) calls. They make it possible to trace through a program and get a sense
of what other programs are doing.

If any program in any language wants to do anything useful, it will have to
make system calls. Characterization of what libraries and external functionality
it’s using can be immensely useful when doing reconnaissance on a system.
You’ll notice that, with these tools, not only can you see what it’s using, but
you can also see who is using it (i.e., what address in the application called).
So, it can also help you to focus on useful functions. For example, you might
see which piece of code calls into cryptography libraries a lot; that’s probably
interesting from a cracking perspective.

ltrace

ltrace (library trace) is a Linux command-line utility that traces library calls.
Library calls are calls by your application into dynamically linked libraries. The
syntax of the command is ltrace <command>.

For example, if you #include <stdio.h>, that library gets dynamically linked
when your program loads. When you call printf or fopen, that is calling into
the standard C library. This construct holds true for all programming languages,
which all include a notion of including external libraries.

strace

strace (system trace) is a Linux command-line utility that traces system calls.
The syntax of the command is strace <command>.

System calls are calls by your application into the operating system, which
manages things like files and your console window. Functions like fopen and
printf eventually, in their inner workings, must make calls into the operating
system. Just like with ltrace, this holds true for all programming languages;
it’s rare for an application to exist that doesn’t utilize OS-level functionality.

strace Example: echo

Monitoring system calls provides a crude way to trace through a program.
Suppose you wrote the echo utility and wanted to watch how it was running.

echo is a Linux command that echoes the input to the output. For example,
the command echo hello! prints "hello!" to the terminal.

But what is it actually doing? Running strace echo hello! will produce
output similar to Figure 9.3.

 Chapter 9 ■ Reverse Engineering: Tools and Strategies 141

This image is complex and can be a lot to decipher. Looking through the
result, you can see some standard system calls at the beginning that are used
to get the echo program up and running.

The following lines are the interesting output, which are found at the very end:

write(1, "hello!\n", 7hello!
) = 7
close(1) = 0

This says that echo wrote a string to stream 1, which, remember, is stdout.
The write command had a return value of 7 because seven characters were
written. Finally, echo closed stream 1, which returned 0 for success. While this
seems simple, imagine using this to track where an application wrote a piece
of configuration data. Say you change a setting and want to see how it stores
that on the system.

strace Example: Malicious Kittens

Comet Cursor was an early example of spyware on the Windows OS. It allowed
users to change the appearance of the mouse cursor and websites to use cus-
tomized cursors. The application installed itself without user permission and
secretly tracked users.

Figure 9.3: strace output for echo hello!

142 Chapter 9 ■ Reverse Engineering: Tools and Strategies

As shown in Figure 9.4, numerous kitten cursor applications exist in the
wild. This example uses an example cursor application that secretly calls out
to a Russian IP address.

Running the code shows no signs of the malicious functionality, as shown here:

deltaop@deltaleph- ubuntu:~$./kittens
Registering kitten cursor!
Done! Enjoy the kitties!
deltaop@deltaleph- ubuntu:~$

However, analyzing the code in strace tells a different story, as shown here:

deltaop@deltaleph- ubuntu:~$ strace ./kittens
...
poll([{fd=3, events=POLLOUT}], 1, 0) = 1 ([{fd=3, revents=POLLOUT}])
send(3, "!$\1\0\0\1\0\0\0\0\0\0\7kremlin\2ru\0\0\34\0\1",
 28, MSG_NOSIGNAL) = 28
poll([{fd=3, events=POLLIN}], 1, 5000) = 1 ([{fd=3, revents=POLLIN}])
ioctl(3, FIONREAD, [28]) = 0
recvfrom(3, "!$\201\200\0\1\0\0\0\0\0\0\7kremlin\2ru\0\0\34\0\1", 1024,
 0, {sa_family=AF_INET, sin_port=htons(53),sin_addr=inet_
 addr("192.168.1.1")}, [16]) = 28
close(3) = 0
socket(PF_INET, SOCK_DGRAM|SOCK_NONBLOCK, IPPROTO_IP) = 3
connect(3, {sa_family=AF_INET, sin_port=htons(53),
 sin_addr=inet_addr("192.168.1.1")}, 16) = 0
...

This sample output from strace shows multiple events. To focus on events
of interest, use grep (which limits results to lines that match your search string,
in this case connect).

Figure 9.4: Kitten cursor applications

 Chapter 9 ■ Reverse Engineering: Tools and Strategies 143

deltaop@deltaleph- ubuntu:~$ strace - f ./kittens 2>&1 | grep connect

connect(3, {sa_family=AF_FILE, path="/var/run/nscd/socket"},
 110) = - 1 ENOENT
connect(3, {sa_family=AF_FILE, path="/var/run/nscd/socket"},
 110) = - 1 ENOENT
connect(3, {sa_family=AF_INET, sin_port=htons(53),
 sin_addr=inet_addr("192.168.1.1")}, 16) = 0
connect(3, {sa_family=AF_INET, sin_port=htons(53),
 sin_addr=inet_addr("192.168.1.1")}, 16) = 0
connect(3, {sa_family=AF_INET, sin_port=htons(53),
 sin_addr=inet_addr("192.168.1.1")}, 16) = 0
connect(3, {sa_family=AF_INET, sin_port=htons(80),
 sin_addr=inet_addr("195.208.24.91")}, 16) = 0
write(2, "connected.\n", 11) = 11

The previous sample output looks for events with the word connect in them.
This includes multiple Internet connections, including one to 195.208.24.91,
which is suspicious as it’s an external IP address, and why would your cursor
need to do that?

strings
strings is a Linux utility designed to extract the printable strings used by an
application. It looks for a series of ASCII printable characters with a (configu-
rable) minimum length and prints any that it finds.
strings can be very useful in reverse engineering because it provides a

high-level understanding of the sorts of things that a program might do. Also,
once you find strings of interest, you’ll see later how you can use those strings
to easily locate the associated piece of code. For example, a string that says
"incorrect password" can be used to quickly trace where the password handling
code is. For example, the following strings provide valuable hints about an
application:

 ■ "Enter password:"

 ■ "open_socket"

 ■ "YOUR FILES HAVE BEEN ENCRYPTED!"

The syntax of the command is strings program. While it is commonly used with
no options, the following flags are sometimes useful when reverse engineering:

 ■ -a: Show all strings in the file, as opposed to only those in the loaded sec-
tions of object files. This is often useful when dealing with obfuscated,
nested, or otherwise unusual binaries.

 ■ -n: Specify the minimum length of successive printable characters for a
sequence of bytes to be considered a string. The default is 4. It is often
useful to expand or limit the number of strings found by the tool.

144 Chapter 9 ■ Reverse Engineering: Tools and Strategies

Dependency Walker
Dependency walking is a technique used to quickly understand the imports
and exports of an application. Dependency Walker is one example of such a
tool. (See the “Tools” section of our repository for links.)

Dependency walking provides a valuable, high-level view into what actions
a program will perform and is often a useful first step in cracking. Most appli-
cations don’t implement all their own functions; they will use functions from
the operating system, or external libraries. Each time an application reaches
outside of its code, that will show up as an imported function. Also, often
applications will share functionality with other applications, and anytime a
function is something “available to be shared,” it will show up as an export of
the application.

Loading a program into a program like Dependency Walker shows the DLLs
that it uses and the API calls it is expected to make. Figure 9.5 shows that the
program will create several registry keys.

Reverse Engineering Strategy

Reverse engineering is still more of an art than a science. While great tools and
techniques are available to help, effective reversing ultimately relies heavily on
intuition and experience.

As such, it is not possible to give a prescriptive solution. However, there are
general approaches and best practices that can help.

Figure 9.5: Examining registry modifications in Dependency Walker

 Chapter 9 ■ Reverse Engineering: Tools and Strategies 145

Find Areas of Interest
Applications contain large volumes of code, and most of it is irrelevant or
unnecessary to reverse engineer. An important first step when reversing an
application is finding the area of the program you are after.

You’ll continue to learn lots of interesting techniques for narrowing this
down, but a few are now available to you based on just knowledge of the
previous tools:

 ■ Interesting strings: Look for program strings that you are interested in
(e.g., “Incorrect Key”) and find where those strings are used (e.g., identify
calls to printf using those strings).

 ■ User input: Look for where input from the user is received (e.g., scanf,
dialog boxes, etc.) and find where that input is processed.

 ■ System input: Look for where input is read in from the system, such as
configuration files and registry settings.

 ■ Authentication code: If possible, use a debugger to pause the program
after inputting the username/key. Then, scan the memory for the entered
values, set HW breakpoints on those locations, and rerun the application
to find where the values are read or written.

Iteratively Annotate Code
Even after you identify the code of interest, it may be difficult to understand.
One approach to understand complex code is to perform multiple passes, add-
ing information (such as comments) during each pass.

To do so, annotate the target area until you understand how it works using
the following process:

 ■ Identify and mark local variables: Use calling convention rules to iden-
tify locals (e.g., [ebp-4] in cdecl). These can be labeled using something
vague at first (e.g., local1).

 ■ Identify and mark function parameters: Use calling convention rules to
identify parameters (e.g., [ebp+12] in cdecl). These can also be labeled
using something vague at first (e.g., arg1).

 ■ Identify API calls (e.g., atoi): Use knowledge of API parameters to further
annotate local variables. For example, API documentation indicates atoi
is passed a string that will be converted to an integer so can rename our
parameter integer_string.

 ■ Add comments to complex control flows: For example, “this code factors
the number.”

146 Chapter 9 ■ Reverse Engineering: Tools and Strategies

 ■ Refine descriptions based on observed data flows: For example, local1
may become loop_counter if you see it used as the counter in a for loop.

A big part of effective reverse engineering is moving quickly. Even small
programs have too much code to analyze everything.

The vast majority of an application’s code will have no relevance to what you
are after. Knowing what to focus on is often less important than knowing what
not to focus on. Learning where to make leaps takes time.

Summary

This chapter introduced some of the core tools and techniques that you will use
as a software reverse engineer and cracker. Before moving on, take some time to
practice and get some hands-on experience using the tools. This practice time
will be invaluable later when you move on to more complex software and more
advanced RE and cracking techniques.

C H A P T E R

147

10

Cracking is the art of reversing software to bypass protections or other
undesirable functionality. This chapter explores some of the key tools and
strategies used for software cracking, including the use of key generators and
patching to defeat key checkers.

Key Checkers

One of the most common practices for licensing software is through license keys.
In a goal to defeat piracy, every installation of the software requires a unique key
to complete the installation. In the case of software with multiple tiers of fea-
tures, they may have some features always freely available, while others reside
behind a license wall, or the software may not work at all without a license key.

License keys are a common anti-piracy solution, and they have their advan-
tages. These are two of the most significant:

 ■ License keys are easy to generate and verify.

 ■ The ratio of valid to invalid keys is so small that random guessing is
unlikely to generate a valid key (assuming a reasonable key length).

Cracking: Tools and Strategies

148 Chapter 10 ■ Cracking: Tools and Strategies

However, like all security, if they are implemented poorly, they can be highly
susceptible to cracking, and like all security, they are not entirely infallible.
A sufficiently knowledgeable and motivated cracker could eventually defeat
or bypass them. However, they’re still one of the stronger forms of protection;
this is just a reminder that there is no such thing as 100 percent secure software.

Back in the day when offline systems were more common, license checking
and validation were often done entirely offline, meaning all of the logic to verify
the key was resident on the system. Now, with prolific connectivity, we often see
license key checks that consist of both an offline and online component, where
they reach out to a license server for additional verification. There are a few
different ways to implement key checks with varying levels of effectiveness.

The Bad Way
In the past, very popular computer games StarCraft and Half-life both used a
checksum as a license key. Recall checksums are often very simple mathematical
expressions performed on a binary blob, some as simple as adding all the num-
bers together. In the checksum used by these games, the 13th digit verified the
first 12.

This meant that a user could enter anything that they wanted for the first 12
digits and then calculate a 13th to create a valid checksum. This lapse in security
led to the infamous 1234-56789-1234 key, which was valid for these games and
used widely to pirate them.

One of the biggest problems in these cases was that the algorithm used to
calculate the checksum was too simple.

x = 3;
for(int i = 0; i < 12; i++)
{
 x += (2 * x) ^ digit[i];
}
lastDigit = x % 10;

There are two ways to approach cracking this. One is that you run the algorithm
and calculate the valid value of the last digit as shown previously.

The other is a brute-force attack. Given it was only one digit you had to figure
out, there are only 10 options for the last digit [0-9]. You can randomly select a
set of 12 digits and then just guess and check the 10 options for the last one until
you find success. The infamous 1234-56789-1234 key was so famous because it
was easy to remember, but by following either of these two approaches (calcu-
lation or brute force), you could generate any number of new keys.

 Chapter 10 ■ Cracking: Tools and Strategies 149

A Reasonable Way
A brute-force attack against a license key is guaranteed to work. . .eventually.
The best that a license key can do is waste enough of a cracker’s time that it
becomes infeasible or impossible to carry out a brute-force attack.

So, how to protect against brute-force attacks? One common option in other
contexts is a cryptographic hash. For example, a license key could be imple-
mented using one of the following options:

 ■ Username: SHA(username)

 ■ Random value: WXYZ-SHA(WXYZ)

The use of a hash function makes a brute-force attack against this much harder.
However, it’s trivially easy for a cracker to determine how the algorithm works
after a look at the code. Depending on your mindset, if you’re an attacker, this
means leveraging the reverse engineering skills you’ve learned to this point to
find the algorithm and unravel it, and if you’re a defender, it means this is a
key piece of code that you need to protect.

An alternative is to use a custom, complex hash rather than a standard one.
While this is normally a horrible idea in security, it’s not an unheard-of choice for
this application. The goal isn’t to provide absolute protection, just to slow down
reverse engineering. For anyone in the security space whose toes are curling at
the suggestion of making your own hash, just note that this suggestion comes
with the caveat that you are able to make a decently good one. As a defender,
keep in mind there are lots of tools out there to do common hashing techniques,
so those will be all the first things an attacker will try to unroll your key.

Also, find ways to add unique complexity so a key can be used only in a
unique setting, and not proliferated. Schemes such as concatenating the product
name and version and computer name within the hashed value adds a solid
level of complexity. This way, a cracked valid key for one installation doesn’t
unlock other releases.

A Better Way
Hashes are better, and, if implemented correctly, they can be decent. But there
are even better options. A great example of this is the approach Microsoft uses
when generating license keys for its software.

Instead of hash algorithms, Windows uses public key cryptography. With
public key cryptography, a digital signature can be generated using a private
key and verified using a public one. This means that a digitally signed license
key can be verified by an application without exposing sensitive keys.

150 Chapter 10 ■ Cracking: Tools and Strategies

When generating its license keys, Windows uses a lot of information about
the software, including but not limited to:

 ■ Bitness (32, 64)

 ■ Type (home, professional, enterprise)

 ■ Product ID

 ■ Hardware features

Including all of this information helps to lock a product key to a specific
installation of the software. If you’re interested in more information on the pro-
tocol, there are lots of resources online tearing into Microsoft’s key generation.

Digitally Signed Keys

Digital signatures on license keys, like those used by Windows, make it much
more difficult to generate fake, valid keys. A valid signature must be generated
using the private key but can be validated with a nonsensitive public key.

Digital signatures prevent the straightforward generation of license keys and
present attackers with two options. The first is to leak a legitimate key, which
could be traced back to a specific user. Alternatively, an attacker can modify
the program to remove the key-checking code, which increases the time and
complexity of pirating the software.

The Best Way
The examples presented so far have focused predominately on offline verifica-
tion of license keys, meaning the entirety of the code to verify and unlock the
software is resident on the system. However, given the prolific connectedness of
systems these days, a way to add more strength is to add an online component.

This can take many forms, but one you see today is each piece of software can
be distributed with a license key in the form of a large random number distrib-
uted alongside the software. When the product is installed and registered, this
value is sent to the license server, which verifies that it is valid and has not been
used already. For digital software distribution these days, the key you’re sent
isn’t even valid until after you buy the software, meaning that if you had guessed
that key 10 minutes before you bought the software, it wouldn’t have worked.

Or you can use hybrid approaches where much of the algorithm to verify
through hashing or public key cryptography is resident on the system, but then
there is also a step where the license server is checked to see if that key has been
used before or if the key has been revoked.

Other Suggestions
The methods introduced align with more of the industry best practices and the
most commonly used methods. But there is not a one size fits all to security,

 Chapter 10 ■ Cracking: Tools and Strategies 151

and some of the following are techniques you could encounter in a cracking
scenario, or you might find them useful in a defensive scenario if you have
unique constraints.

Prefer Offline Activation

While the addition of online key servers sounds powerful from a security per-
spective, and it is, it’s worth acknowledging that technique comes with a huge
amount of manageability and infrastructure pain. Managing key servers is no
small feat, and they become a beacon for cyberattacks. So, you will still often
find that many companies aren’t able or willing to bite off that level of chaos,
so they will still favor going for stronger offline verification. Supporting offline
key verification eliminates the complexities of managing a key server and is
inclusive to users without Internet access.

Perform Partial Key Verification

In an offline mode, you have no method to perform revocation and have no
way to make some keys no longer work. To prevent a single leaked key from
working on all future versions of your software, check only some of the key.
A simplistic example would be to check only the first character of each group
in a license key such as the X, 9, B, and B in X4Z-951-B41-BR0.

If someone releases a key generator for your application, release a new ver-
sion that checks part of the remaining key. For example, switch to checking the
second character of each group (4, 5, 4, and R). This limits the potential damage
caused by a single key generator.

Encode Useful Data in the Key

Encoding useful data in the key can help to limit its applicability. For example,
a key may specify the maximum version of the application that it applies to,
limiting the impact of a compromised key.

Key Generators

If a piece of software uses a key for activation, crackers will want to build a
key generator for it. This is true regardless of which type of key activation you
did. Key generators are then distributed for people to generate a “free” key for
software.

You’ll see later how to patch software to simply remove a key check, so for
now focus on making a key generator, and assume you can’t just bypass the key
check. Key generators typically require a more in-depth analysis of the program
and a deeper understanding of the key algorithm.

152 Chapter 10 ■ Cracking: Tools and Strategies

Why Build Key Generators?
If key generators are more difficult to create, why bother building them? There
are a few different reasons.

Software can have various defenses that can make patching the more difficult
route, such as the following:

 ■ Tamper proofing

 ■ Dynamic checks

 ■ Anti-debugging

 ■ Software guards

Also, patching may require releasing a modified copy of the target software,
which may be watermarked. Watermarking is a technique to trace a piece of
software back to who originally purchased it. These watermarks can be used
to trace a cracked piece of software back to the cracker, which is obviously
something they don’t want.

The software could implement online checks to look for patched/modified
versions of programs. Alternatively, some software may decrypt itself based on
the entered key (unpacking, which will be explored in Chapter 13, “Advanced
Defensive Techniques”), and removing the key check entirely means it won’t
be able to decrypt.

Key generators are also more future-proof than patching. An application
developer can’t easily revoke valid keys.

Finally, crackers may choose key generators because they are harder. Patch-
ing in some cases is easy, while building a successful keygen is a challenge that
carries a certain amount of prestige.

The Philosophy of Key Generation
When cracking key checkers, it is useful to think of the key checker in the form
of f(u) == g(k), where:

 ■ u is the username entered by the user.

 ■ f is a transformation function on the username.

 ■ k is the key entered by the user.

 ■ g is a transformation function on the key.

In this model, the key check is a validation that f(u) == g(k). In non-math-
speak this means that some transformation/mutation is done on the username
and then compared to some type of transformation done on the key. In this
example (and the following examples), the username is the input, but keep in
mind this can be any combination of things; they could use the version number,

 Chapter 10 ■ Cracking: Tools and Strategies 153

computer name, etc. But the idea is something is going into a transformation to
come up with a result. And that result is compared to the input key, which has
also gone through some type of transformation (note this transformation could
be nothing, meaning the result is simply the key, or it could be more hashing
or mutation). With this model in mind, there are a few potential variants of
key checks.

Going back to the initial StarCraft/Half Life example, u would actually be the
first 12 digits of the key, and k is the last digit. In this setup, there is no username
entered; rather, part of the key is used to check the other part.

Another option is that u, and therefore f(u), is a constant (i.e., hard-coded
keys). In this setup, there is no username entered; rather, the key is transformed
and checked against a fixed value. For example, “the sum of all of the digits in
the key is equal to 1337.”

Cracking Different Types of Key Checks
By reasoning about key checkers in the formula f(u) == g(k), you can start to
build techniques for cracking different permutations.

Key Check Type I: Transform Just the Username

For this case, the username is transformed using some function, and that is then
compared to the key that was entered. So, in this case you can consider g()
causes no mutation to the key. This allows us to simplify our key check to just
f(u) == k. In this setup, the program transforms the username and validates
that the transformed value matches the key entered by the user.

To crack this type, locate and extract the transformation function f into a
key generation application. For example, multiply ordinals of characters in
username together and match against the key. The key generator will prompt
the user for the username they desire to use and then perform f(u)and print
out the valid key.

Key Check Type II: Transform Both

For Type II, you still have a transformation of the username, but, in addition,
g performs a mutation. The very mathematical way to look at this is that g has
an inverse. That is, g-1 exists, and g-1(g(k)) == k). The simple way to think
about this is that g will perform a mutation, and every mutation has a way of
unmutating it (i.e., do the exact opposite).

In this setup, the program transforms the username, transforms the entered
key, and validates that the two produce the same results. However, the function
g can be inverted (“reversed” or “backed out”).

154 Chapter 10 ■ Cracking: Tools and Strategies

To crack this type of key check, reverse engineer g and derive g-1. Often, this
is as simple as “undoing” each transformation on g in reverse order. Then, gen-
erate a key with g-1(f(u)).

For example, assume g(k) = k * 2 + 1000. If so, g-1(h) = (h – 1000) / 2.
In this case, the key generator would prompt for the desired username (as

with Type I) and perform the f(u), but then the result now is the mutated key, so
you have to do your unrolling with g-1(h). That final result is then the valid key.

Key Check Type III: Brute Forceable

In Type III, a collision on f(u) can be brute forced through g(k). This is a viable
approach if the key space is very small or you have a lot of computing power.

In this setup, the program transforms the username, transforms the entered
key, and validates that the two produce the same results (same as Type II). But
you instead are looking for a solution to f(u) == g(k) by repeatedly testing
random or pseudorandom ks.

To crack this type, determine the format of k. Then, extract g into a self-
contained key generator. Finally, generate random ks until a solution to
f(u) == g(k) is found.

For example, consider the case where g(k) = CRC32(k). If the key mutation
is using something so small such as the CRC32 algorithm, then brute force
becomes pretty trivial on a standard computer. Since CRC32 has such a small
range of possible values, it’s possible to brute force.

Defending Against Keygens
Key checks may be a combination of these types. For example, the key trans-
formation g may be both brute forcible and invertible.

Key checks generally must fall into one of these categories. Otherwise, there
would be no way to generate keys in the first place.

Key Check Type I is the weakest. The cracker needs only to extract the algorithm
from the key checker, with no need to actually RE the algorithm.

Key Check Type III is better. It requires the attacker to extract both algorithms
and identify a way to brute force the key transformation, which is not always
obvious.

Key Check Type II is likely best but also the hardest to design well. Cracking
this requires the attacker to derive the inverse of the key transformation function.
This may necessitate a deep analysis of the transformation algorithm, slowing
the attack.

As always, there is no silver bullet. Every key checker can be cracked even-
tually, and the best that a defender can do is slow down the attacker.

.

 Chapter 10 ■ Cracking: Tools and Strategies 155

Lab: Introductory Keygen

This lab provides experience in creating a keygen for a simple program.
Labs and all associated instructions can be found in their corresponding

folder here:

https://github.com/DazzleCatDuo/

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Introductory Keygen and follow the provided
instructions.

Skills
This lab practices the use of objdump and the strings utility to generate a
keygen. Some of the key skills it tests include the following:

 ■ Initial reconnaissance

 ■ Reverse engineering x86

 ■ Key generation

Takeaways
In addition to modifying a program, it’s often possible to crack a program just by
observing how it works. The right approach is often determined by the program
constraints, and choosing which to use is an important skill.

Procmon

In reverse engineering, you want to learn as much about how the program
works as possible. Before jumping to super-fancy debugging, start easy by just
observing software’s behavior.

Procmon is a tool distributed as part of the Sysinternals suite of tools (avail-
able at http://technet.microsoft.com/en- us/sysinternals/bb842062). This
repository contains about 60 windows utilities made and freely distributed by
Microsoft. Note these tools work only on Windows OSs.

Example: Notepad.exe
Try taking a look at what notepad.exe does when you create a new file, change
the font, and then save some content. To do so, take the following steps:

1. Open Procmon.exe.

2. Launch Notepad.

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
http://technet.microsoft.com/en-us/sysinternals/bb842062

156 Chapter 10 ■ Cracking: Tools and Strategies

3. Enter some text into the Notepad document.

4. Click the Format menu and then the Font menu item.

5. In the Font window, change the font to Webdings.

6. In the Font window, change the size to 20.

7. Click the OK button.

8. Save the Notepad document as Example1.txt.

9. Close Notepad.

Stop Process Monitor capture activity by clicking the Capture button,
as shown in Figure 10.1. The icon should now show an X over the magni-
fying glass. At this point, Process Monitor has captured all File, Registry, and
Process/Thread events.

Process Monitor captures thousands of events a second, which results in too
many records to review manually. It’s necessary to filter the results down to
events of interest. To do so, open the Filter menu by clicking the funnel icon,
as shown in Figure 10.2.

To see only events related to the process Notepad.exe, define a filter stat-
ing that the Process Name is Notepad.exe, as shown in Figure 10.3. You can
accomplish this via the following steps:

1. Select Process Name from the Column list box.

2. Select is from the Relation list box.

3. Type Notepad.exe in the Value text box.

4. Select Include from the Action list box.

5. Click the Add button.

6. Click Apply and OK.

Figure 10.1: Halting Process Monitor

Figure 10.2: Filtering events in Procmon

 Chapter 10 ■ Cracking: Tools and Strategies 157

Filtering based on the process name dramatically decreases the number of
events. However, it’s still not enough.

To find events of interest, you need to define additional filters. Procmon has
several categories of events that you can filter on, including the following:

 ■ Registry

 ■ File

 ■ Network

 ■ Process thread

To start, try focusing on the Registry values that Notepad modifies. Process
Monitor has a handy button for this, as shown in Figure 10.4.

If Notepad has saved values to the Registry, it will create an event entry of type
'Operation' 'RegSetValue'. By right-clicking entries in Procmon’s log, you can
choose to include or exclude certain types of events, as shown in Figure 10.5.
This enables you to further refine your results and focus on events of interest.

Figure 10.6 shows a Procmon entry that seems to be related to the changes to
the font in Notepad. To see more information, right-click the entry and select
Properties.

Figure 10.3: Defining a filter in Procmon

Figure 10.4: Filtering on Registry events in Procmon

158 Chapter 10 ■ Cracking: Tools and Strategies

Figure 10.7 shows the properties of the event. In the Data field, you can see
the text “Webdings,” indicating that this is an event triggered by changing the
Notepad font to Webdings.

How Procmon Aids RE and Cracking
Procmon made it possible to see the Registry changes made by Notepad. However,
this isn’t all that it can do. Further exploration of the tool reveals a great deal
of useful information.

Call Stacks

The Properties window for an event has a few different tabs. Clicking over to
the Stack tab shows the sequence of calls used to reach this point, as shown in
Figure 10.8.

Looking further down this stack trace, it’s possible to see the point where the
program left notepad.exe, as shown in Figure 10.9. This transition point from
application to libraries might be a good starting point for reversing.

File Operations

Procmon also records events for file operations, such as opening, closing, and
editing files. Figure 10.10 shows an example of this.

Figure 10.5: Including and excluding event categories in Procmon

Figure 10.6: Notepad font change registry event

 Chapter 10 ■ Cracking: Tools and Strategies 159

These file events can provide useful information for reversing. For example,
they can help with identifying and analyzing configuration files, export functions,
and proprietary file formats.

Figure 10.7: Event properties in Procmon

Figure 10.8: Stack view in Procmon’s Properties window

160 Chapter 10 ■ Cracking: Tools and Strategies

Registry Queries

The Notepad.exe example showed how to find the Registry operation for chang-
ing the font in Notepad. However, this isn’t the only possible use for registry
queries.

For example, Figure 10.11 shows that Notepad looked for two keys with the
word “Security” in them but couldn’t find them. You could add these keys to
your Registry and place custom values in them to change how Notepad operates.

Resource Hacker

Resource Hacker (also known as ResHacker or ResHack) is a free extraction
utility or resource compiler for Windows. Resource Hacker can be used to add,
modify, or replace most resources within Windows binaries including strings,
images, dialogs, menus, and VersionInfo and Manifest resources. (For tool links,
visit the tools section of our GitHub site at https://github.com/DazzleCatDuo/
X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES.)

Figure 10.9: Stack trace for notepad.exe

Figure 10.10: File operations in Procmon

Figure 10.11: Security Registry queries in Procmon

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

 Chapter 10 ■ Cracking: Tools and Strategies 161

Resource Hacker can be a useful tool for exploring the structure of a binary
prior to the cracking process. It can be used to find and understand the structure
of nag screens, key entry screens, help menus, and more.

Resource Hacker can also be used to add functionality to a program before
or after cracking. For example, it’s possible to add new icons, menus, and skins
to an existing application.

To get started, open an .exe file in ResHack to explore its strings, images,
dialogs, menus, etc., as shown in Figure 10.12. Then, click an item in ResHack
(left) to show how that item would look in the application (right).

Example
Suppose you see the window shown in Figure 10.13 in a program. As a cracker,
you want to understand how that window would be used by the program.

To find out, open the program in ResHack. Then, use Ctrl+F to search for one
of the strings used in the dialog box, as shown in Figure 10.14.

Figure 10.12: Sample application in Resource Hacker

Figure 10.13: Password window

162 Chapter 10 ■ Cracking: Tools and Strategies

Resource Hacker identifies this dialog box as the “GETPASSWORD2” dialog
box, as shown in Figure 10.15. Knowing this can help to guide the process of
reversing the program.

Mini-Lab: Windows Calculator
To try your hand at using Resource Hacker, try rebranding the Microsoft
Calculator. As shown in Figure 10.16, the Calculator window is titled Calculator.
Try changing this value to something else.

To start, open the calc.exe executable in Resource Hacker. Then, search for
the word Calculator, as shown in Figure 10.17.

Figure 10.14: String search in Resource Hacker

Figure 10.15: Identifying a dialog box in Resource Hacker

 Chapter 10 ■ Cracking: Tools and Strategies 163

The main Calculator window may not be the first result. Keep on searching until
you find the code defining the Calculator dialog box, as shown in Figure 10.18.

In Figure 10.18, the CAPTION string determines the title on the application
window. Change this string to rebrand the application as your own.

After changing the CAPTION, click the green arrow button shown in
Figure 10.19. This will compile the modified Calculator application.

After the application has been compiled, the updated version of the window
should be shown in the window preview. This should include the modified
caption, as shown in Figure 10.20.

Compiling the application doesn’t automatically save the modified version.
To do so, select File ➪ Save, as shown in Figure 10.21.

Figure 10.16: Microsoft Calculator

Figure 10.17: Searching for Calculator in ResHack

164 Chapter 10 ■ Cracking: Tools and Strategies

Figure 10.18: Calculator window in Resource Hacker

Figure 10.19: Compiling the modified application

Figure 10.20: Modified window in Resource Hacker

 Chapter 10 ■ Cracking: Tools and Strategies 165

At this point, you’ve successfully rebranded Windows Calculator. For more
of a challenge, try the following:

 ■ Use Resource Hacker to resize the window to accommodate your new name.

 ■ Modify the available buttons.

 ■ Modify the calculator background.

 ■ Open and edit other programs in your VM.

Patching

Patching involves modifying a compiled binary to modify code affecting its
execution. Depending on the situation, sometimes the easiest thing to do is
patch an application to circumvent its security.

Patching vs. Key-Genning
In some cases, advanced integrity checks or obfuscation might make patching
difficult. For example:

 ■ Patching an encrypted/packed program on disk is not feasible.

 ■ Patching around dynamic integrity checks (e.g., continuously validated
checksums) may be too cumbersome.

 ■ The logistics of distributing a patched executable may not be desirable.

Figure 10.21: Saving the modified application in ResHack

166 Chapter 10 ■ Cracking: Tools and Strategies

In these situations, you may choose to fall back on key generators instead.
Otherwise, patching a program to remove its key checks (or any other logic you
want to avoid) is often the easier approach, when possible.

Where to Patch
Patching can be done in two different places: in memory or on disk.

Patching in memory modifies the machine code in memory. This is use-
ful for reverse engineering attempts because you may need to try dozens (or
hundreds. . .or more. . .gasp) of things before one works. In-memory patching
affects only the current execution of the application. Each time you restart the
application, any in-memory patching will be lost.

Patching on disk modifies the machine code in the compiled binary. This
is useful once you know what works and affects all future executions of the
application. It makes the modifications persistent and will be there every time
the application is launched.

NOPs
Recall the instruction nop. It is a one-byte instruction (0x90) that does nothing.

When patching applications, it is critical to not move the code. In fact, mod-
ifying the size or simply deleting code will crash the application. To remove
sections of code yet maintain the same size, fill the space with nops.

For those of you who are curious why simply deleting code doesn’t work,
there are many factors to this, but the most important is that some x86 code is
relative and some of it is absolute references. Looking at the relative case first:
this means some code translates to relative things like “jump forward 40 bytes
from where I am now.” In cases like this, if you remove code between the jump
and its destination 40 bytes away, you’ve messed up the jump. It will continue
to jump 40 bytes ahead, except that now it may land in the middle of an opcode
or skip critical instructions, which then results in a crash. If the code you remove
is outside of that 40-byte bubble and the jump forward 40 bytes still lands in
the same spot, then it would have no effect.

Now, consider absolute references. These types of references would look like
“use the data value at address 0x1234567.” If you remove code anywhere in
the binary before that address, you’ve caused everything to shift. So, when any
absolute reference goes to grab its values or perform an absolute jump, all of the
locations will be wrong, even if all you did was remove 1 byte from the binary.

This means relative references are affected only by adding/removing bytes if
they occur in between where the reference is made and the destination. How-
ever, all absolute references are destroyed if you shift the application even by

 Chapter 10 ■ Cracking: Tools and Strategies 167

1 byte. This is why it’s critical in patching to maintain the size (unless of course
causing everything to crash is your goal, in which case smash away!).

Circling back to nop, if you want to remove a piece of code, such as causing
software to skip a key checker, instead of deleting the code, you simply replace
it all with nops. This maintains the application’s byte alignment but causes
nothing to happen when it reaches the undesirable code.

Other Debuggers

For reverse engineering with dynamic analysis on Windows, there are numerous
popular choices. Here are a few:

 ■ OllyDbg

 ■ Immunity

 ■ x64dbg

 ■ WinDbg

Which of these to use depends on the situation and user preference. All of
them have similar features, and skills in one typically translate to the others
as well. You’ll dip your toes into a few different pieces of software throughout
the book; the goal is to give you a taste of many so you can get a feel for when
each is useful.

OllyDbg
OllyDbg is an immensely popular and powerful debugger. While most debug-
gers focus on debugging, Olly has extended features, including the following:

 ■ Extensibility, plugins, scripting

 ■ Execution tracing system

 ■ Code patching features

 ■ Automatic parameter descriptions for most Windows functions

 ■ Emphasis on binary code analysis (i.e., not based around source debugging)

 ■ Small and portable

These features make OllyDbg excellent for the following:

 ■ Writing exploits

 ■ Analyzing malware

 ■ Reverse engineering

168 Chapter 10 ■ Cracking: Tools and Strategies

However, while OllyDbg is a powerful and popular tool, it does have its
limitations. One of these is that it works only for 32-bit executables, which
admittedly are a dying breed but not dead yet.

The other is that the OllyDbg interface often takes some getting used to and
does not feel robust or intuitive at first. However, you should definitely stick
with it, as it is a powerful dynamic analysis tool.

Immunity
Immunity is a fork of OllyDby, meaning that it has many of the same capabil-
ities. It also introduces many additional features that make it popular for exploit
developers, such as support for Python scripting.

However, like OllyDbg, Immunity can be used only to debug 32-bit execut-
ables. Also, it inherits OllyDbg’s unintuitive user interface.

x86dbg
x86dbg is a replacement for OllyDbg that supports both 32-bit (x86dbg) and
64-bit (x64dbg) applications. This wider support means that it is commonly the
tool of choice when reversing or debugging 64-bit applications.

WinDbg
WinDbg is a debugger that is universally applicable, has strong support, and
offers excellent debugging symbol support (but which is less useful with RE).
However, it has a debugging focus and lacks some features of RE-focused tools.

Debugging with Immunity

Because of time and space constraints, exploring all of these debuggers is infea-
sible in this book. Immunity was selected because of its popularity for reverse
engineering and exploit development. However, it’s important to remember
that all of these debuggers have similar features, and skills learned in one will
often translate over to others.

Figure 10.22 shows how Immunity looks in Windows. From the top-left and
moving clockwise, the four windows show the program’s disassembly, regis-
ters, stack, and memory.

Immunity: Assembly
Figure 10.23 shows a program’s disassembly in Immunity. Note that it shows
the memory address, machine code, and x86 assembly.

 Chapter 10 ■ Cracking: Tools and Strategies 169

Figure 10.22: Immunity debugger window

Figure 10.23: Assembly code in Immunity debugger

170 Chapter 10 ■ Cracking: Tools and Strategies

To select a line of code, click it. Once a line is selected, Immunity offers var-
ious keyboard shortcuts, including the following:

 ■ ;: Add a comment to the selected line. This is the most important part of
reverse engineering; it helps you keep track of your work.

 ■ ctrl-a: Auto-analyze the program. Immunity can do a fairly good job of
adding comments and guessing function parameters.

 ■ <enter>: Navigate to the selected function. For example, if you see the
assembly call 0x1234 and want to find out what the function at 0x1234 does.

 ■ -: Go back to the previous location. For example, after you’ve analyzed
function 0x1234 and want to return to where you were.

 ■ +: Go to the next location (after pressing -). For example, if you returned
to the calling function with -, but then want to go back to function 0x1234.

 ■ ctrl-r: Find cross-references to the selected line. For example, if you have
a string selected in the memory dump window and want to know who
uses that string; or if you have the top of a function selected in the disas-
sembly and want to find out who calls that function.

 ■ Double-click address: Set a debugging breakpoint at this address.

Immunity: Modules
In Immunity, you can load the list of executable modules by pressing the e button.
This shows all the code— including dynamically loaded libraries— that you can
debug, as shown in Figure 10.24. After opening the list, you can double-click a
module to go to that code.

When you start Immunity, see what module you are currently looking at
by checking the eip register. In nearly every case, you will want to start by
debugging the main executable, not a shared library like ntdll. You can use
the modules window to switch to the main executable.

Immunity: Strings
It is often useful to find what code is using a certain string in the executable. To
find all the strings that a program is using, right-click and select Search For ➪
All Referenced Text Strings, as shown in Figure 10.25.

In the strings window, right-click and select Search For Text to find a specific
string, as shown in Figure 10.26. Then, right-click again, and select Search For
Next to find the next reference to that string. You can double-click a string’s
address to go to the location where it is used in the disassembly.

 Chapter 10 ■ Cracking: Tools and Strategies 171

Figure 10.24: Executable modules in the Immunity debugger

Figure 10.25: Strings in Immunity debugger

172 Chapter 10 ■ Cracking: Tools and Strategies

Immunity: Running the Program
Click the play arrow to launch the executable under the debugger, as shown in
Figure 10.27. Execution can be stopped by clicking the X to the left of the play
arrow or can be paused using the pause button to its right. Execution can be
restarted via the button with two left-facing arrows.

Figure 10.26: String references in Immunity debugger

Figure 10.27: Launching an executable in Immunity debugger

 Chapter 10 ■ Cracking: Tools and Strategies 173

After execution has been halted by a breakpoint or the pause button, you can
click Step Into to progress the program one instruction, as shown in Figure 10.28.
Alternatively, if you are stopped on a function call but already know or do not
care about what the function does, click overstep Over, as shown in Figure 10.29,
to continue debugging after the function returns.

Immunity: Exceptions
Many applications generate exceptions as part of normal execution. For example,
a try {} except {} block will generate an exception if anything goes wrong in
the try block. As a debugger, dynamic analysis tools like Immunity typically
intercept the exception first to see if you want to do anything with it.

But for reverse engineering, you generally don’t want to interfere with normal
execution. Instead, you want to let the application handle the exception the way
it normally would. This means you almost always want to pass the exception
from the debugger to the application.

As shown in Figure 10.30, exceptions are reported at the bottom of the Immu-
nity window, but each debugger is slightly different. In Immunity, press Shift+F9
to pass the exception and continue execution.

Figure 10.28: Single-stepping in Immunity debugger

174 Chapter 10 ■ Cracking: Tools and Strategies

Immunity: REwriting the Program
Immunity has many features to aid in the development of patches to modify
software behavior. For the purposes of software cracking, this includes making
program edits to remove key checks, nag screens, etc.

Figure 10.29: Stepping over instructions in Immunity debugger

Figure 10.30: Exceptions in Immunity debugger

 Chapter 10 ■ Cracking: Tools and Strategies 175

In your first cracks, you will use the process of “noping” out code to remove
it from the program. This involves replacing program instructions with nop
instructions.

To do so in Immunity, first select the instruction(s) that you want to remove.
Then, right-click and select Binary ➪ Fill With NOPs, as shown in Figure 10.31.

This will replace the selected instruction(s) with a series of nops, as shown
in Figure 10.32.

After modifying the program, test the patch by rerunning the program. If you
patched the correct portion of code, you should find that the nag screen (key
check, etc.) has disappeared.

However, if the patch crashes or failed to remove your target, you can easily
revert your changes and try again. To do so, select the patch button to bring up
the patches window. Then, right-click your patch and select Restore Original
Code, as shown in Figure 10.33, to revert your patch and try again.

Once you have identified a working patch, save your changes to the executable
to make it permanent. As shown in Figure 10.34, right-click and select Copy To
Executable ➪ All Modifications. When a confirmation window appears, select
Copy All.

A modified executable window should appear, showing your changes. Close
the window, and select Yes to save your file. Give your file a new name, such
as cracked.exe.

If you are confident in your modification, you can run cracked.exe directly.
If you want to keep debugging with these new changes, you’ll need to reload
cracked.exe into Immunity.

Figure 10.31: noping out code in Immunity debugger

Figure 10.32: noped code in Immunity debugger

176 Chapter 10 ■ Cracking: Tools and Strategies

Lab: Cracking with Immunity

This lab provides hands-on experience with cracking programs using a debugger.
Labs and all associated instructions can be found in their corresponding folder here:

https://github.com/DazzleCatDuo/

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab Cracking with Immunity and follow the provided
instructions.

Skills
This lab practices reverse engineering, patching, and circumventing software
protections using Immunity and Resource Hacker. Some of the key skills tested
include the following:

 ■ Reverse engineering x86

Figure 10.33: Reverting modified code in Immunity debugger

Figure 10.34: Saving a modified file in Immunity debugger

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

 Chapter 10 ■ Cracking: Tools and Strategies 177

 ■ Patching

 ■ Static versus dynamic analysis

Takeaways
Software can be easily modified to add, change, or remove functionality. These
same techniques can be used to circumvent anything from trivial to advanced
protections, as long as you understand how the software works.

Summary

Key checkers are intended to protect against the distribution and use of unli-
censed and cracked copies of software, but no defense is perfect. Tools like
Procmon, Resource Hacker, and debuggers can be used to understand these
defenses and defeat them through the use of key generators or patching.

C H A P T E R

179

11

The previous chapter introduced software cracking and patching. This chapter
provides a more in- depth look at patching and some of the more advanced tools
that can be used for reversing and cracking.

Patching in 010 Editor

It is often useful to be able to view and edit the hex of a file. If you’ve ever
tried to open a binary in a text editor, you saw a lot of crazy symbols and blank
space. This is because the text editor is trying to interpret everything in the file
as ASCII, which it’s not. Instead, we need an editor that will display as hex,
not ASCII. There are many different hex editors capable of doing this. One of
our favorites is 010 Editor. (Find links in the Tools section of our GitHub site
at https://github.com/DazzleCatDuo/X86- SOFTWARE- REVERSE- ENGINEERING-
CRACKING- AND- COUNTER- MEASURES).

Open any file (executable, data file, image, music, etc.) to view its hex.
Figure 11.1 shows a sample executable in 010 Editor.

Figure 11.2 shows the Inspector pane. This shows the various different pos-
sible interpretations of the data at your cursor.

Patching and Advanced Tooling

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

180 Chapter 11 ■ Patching and Advanced Tooling

If you know what you’re looking for, you can search for it, as shown in
Figure 11.3. You can search for many different types of data, including the
following:

 ■ Text

 ■ Hex bytes

 ■ ASCII string

 ■ Unicode string

 ■ EBCDIC string

 ■ Signed/unsigned byte

 ■ Signed/unsigned short

Figure 11.1: Viewing a file in 010 Editor

Figure 11.2: Inspector pane in 010 Editor

 Chapter 11 ■ Patching and Advanced Tooling 181

 ■ Signed/unsigned int

 ■ Signed/unsigned int64

 ■ Float

 ■ Double

 ■ Variable name

 ■ Variable value

You can jump to a specific address if you know where you need to go, as
shown in Figure 11.4. This location of “where to go” can be specified as a byte,
line number, sector, or short.

Figure 11.3: Searching in 010 Editor

Figure 11.4: Jumping to an address in 010 Editor

182 Chapter 11 ■ Patching and Advanced Tooling

In 010 Editor, you can directly modify the hex. Simply place your cursor and
start typing to overwrite.

However, 010 Editor understands how important it is to maintain file size.
When you type values, in 010 Editor it overwrites existing values at that location.
It does not insert them, which would make the file larger.

CodeFusion Patching

After a researcher figures out how to crack a program, the next step is often
to create a patcher/cracker utility. This will allow others to crack the same
program.

CodeFusion is a popular patch generator. It creates a stand- alone execut-
able file that can be used to crack a specific application. (Find links in the
tools section of our GitHub site here: https://github.com/DazzleCatDuo/
X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES).

To start creating a patcher, launch CodeFusion, and configure the information
that will appear when the patcher is launched. This information is shown in
Figure 11.5 and includes the program caption, program name, comments, icon,
etc. These can be whatever you want.

On the next screen, add the files to be patched, as shown in Figure 11.6. This
is the executable that you want to crack.

Figure 11.5: CodeFusion start screen

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

 Chapter 11 ■ Patching and Advanced Tooling 183

Next, add the patch information by clicking the + icon shown in Figure 11.7.
This is typically the information you learned from Immunity, Cheat Engine,
IDA, etc. It usually includes an offset to patch, and the bytes to replace. Often,
the bytes to patch with are 0x90 (nops). On the next page, click Make Win32
Executable to create an EXE file to patch the target application.

Figure 11.6: Loading a file in CodeFusion

Figure 11.7: Adding patch information in CodeFusion

184 Chapter 11 ■ Patching and Advanced Tooling

CodeFusion will add a new executable alongside the target application. As
shown in Figure 11.8, run this executable, select the target, and click Start to
apply the patch and crack the application.

This cracking executable is what a cracking group would often redistribute.
It is much smaller and more portable than the full, cracked app. Someone just
needs to have the application installed, download your small patcher, and run
it, and it will perform the patching to the genuine executable.

Cheat Engine

Cheat Engine is a popular and powerful open- source memory scanner, hex editor,
and debugger. While the tool is primarily used for cheating in computer games, it
can also often be valuable for quick dynamic analysis in software cracking. (Find
links in our tools section on our GitHub here: https://github.com/DazzleCatDuo/
X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES).

Cheat Engine enables searches for values input by the user with a wide
variety of options. These allow the user to find and sort through the com-
puter’s memory.

Cheat Engine: Open a Process
Unlike other tools, reversing with Cheat Engine doesn’t start with opening an
executable. Instead, you select a running process to edit.

First, run the program that you want to crack. Then, start Cheat Engine and
click Select A Process To Open, as shown in Figure 11.9. The Process List window
appears, and you can select the process to crack and click Open.

Figure 11.8: Launching the patched executable in CodeFusion

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

 Chapter 11 ■ Patching and Advanced Tooling 185

Cheat Engine: View Memory
Cheat Engine is based heavily around the idea of memory scans.

The main Cheat Engine window is primarily used for scanning memory. How-
ever, for now, focus on some simpler functionality: memory view. As shown in
Figure 11.10, click Memory View to view the process’s memory.

The memory view provides an easy and powerful way to view, scan, and
modify a process’s memory. As shown in Figure 11.11, memory view includes
the disassembly at the top of the screen, an instruction reference in the middle,
and a hex dump at the bottom.

Figure 11.9: Opening a process in Cheat Engine

186 Chapter 11 ■ Patching and Advanced Tooling

Figure 11.10: Viewing memory in Cheat Engine

Figure 11.11: Memory Viewer pane in Cheat Engine

 Chapter 11 ■ Patching and Advanced Tooling 187

Cheat Engine: String References
As discussed, examining the strings in an executable can provide invaluable
hints regarding its functionality. To view strings in Cheat Engine, select View
➪ Referenced Strings to get a list of all of the strings used by the program.

Figure 11.12 shows the window that will pop up, where you can click on a
string to view its cross references. Double- click on a cross- reference address to
go to where the string is used in the disassembly.

Cheat Engine: REwriting Programs
Recall that noping out a chunk of code is the safest and easiest way to remove
it without affecting the rest of the program. Cheat Engine makes this easy. To
bypass an instruction (such as a final conditional jump in a key check), right-
click the instruction and select Replace With Code That Does Nothing, as shown
in Figure 11.13.

Cheat Engine is highly interactive. You can immediately try your modifica-
tion in the running program! If your modification didn’t work or if you want
to undo it, right- click the modified code and select Restore With Original Code,
as shown in Figure 11.14.

Figure 11.12: String references in Cheat Engine

188 Chapter 11 ■ Patching and Advanced Tooling

Cheat Engine: Copying Bytes
Once you’ve found a working patch, the next step is to copy that patch over
into an executable file rather than a running process. As shown in Figure 11.15,
you can right- click the patch location and select Copy To Clipboard ➪ Bytes
Only to copy those bytes for use by other tools.

Cheat Engine: Getting Addresses
To make a patch, you need to know where in the file the data to patch is. Cheat
Engine is all about runtime analysis, so it does not know where in the file the
data is.

To find an address, use 010 Editor to perform a search for the machine code
you are replacing. That address is the file offset to patch for use in CodeFusion
or other patchers.

Figure 11.13: noping out instructions in Cheat Engine

 Chapter 11 ■ Patching and Advanced Tooling 189

Figure 11.14: Reverting changes in Cheat Engine

Figure 11.15: Copying bytes in Cheat Engine

190 Chapter 11 ■ Patching and Advanced Tooling

Lab: Cracking LaFarge

This lab practices using these tools to patch programs. Labs and all associated
instructions can be found in their corresponding folder here:

https://github.com/DazzleCatDuo/

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab LaFarge and follow the provided instructions.

Skills
This lab provides experience using CodeFusion and Cheat Engine to practice
the following skills:

 ■ Reverse engineering x86

 ■ Patching and patchers

Takeaways
A variety of tools are available for reverse engineering and cracking; choosing
the “right” one depends on the challenge at hand and personal preference.
Crackmes are a (usually) safe, always legal, incredibly addictive way to prac-
tice your cracking skills.

IDA Introduction

If you’ve ever googled reverse engineering tools, IDA is guaranteed to come
up. It’s the Cadillac of reverse engineering tools.

IDA, aka the Interactive Disassembler, allows for binary visualization of dis-
assembly. It is available under a freemium model where limited features are
available for free, while some of the more powerful features (or more obscure
architectures) require a paid license.

Figure 11.16 shows the process of loading a new file in IDA. IDA automatically
recognizes many common file formats, but if it gets it wrong, you can select
the generic Binary File. IDA also offers a Processor Type drop- down menu to
change architectures.

One of IDA’s greatest strengths is its graph view, which shows a visual rep-
resentation of an executable’s x86 assembly and control flows. Figure 11.17
shows this view and some of the most useful components of it, including a
memory map of the executable, a list of functions, the logic block view, and
a graph window.

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

 Chapter 11 ■ Patching and Advanced Tooling 191

Figure 11.16: Loading a file in IDA

Figure 11.17: IDA graph view

192 Chapter 11 ■ Patching and Advanced Tooling

IDA: Strings
As always, strings are a good starting point when analyzing a new executable.
However, IDA doesn’t show them by default. Figure 11.18 shows how to access
the String view by clicking View ➪ Open Subviews ➪ Strings.

Figure 11.19 shows the full list of strings in IDA. IDA shows the text of the
string itself, its address, and its predicted length.

Figure 11.18: Opening strings view in IDA

Figure 11.19: Strings view in IDA

 Chapter 11 ■ Patching and Advanced Tooling 193

Click a string to highlight it. Then, press X or right- click and select Jump To
Xref To Operand. This will open up a window showing all of the locations where
the string is used in the program, as shown in Figure 11.20.

Following one of these cross- references will show the disassembly where the
string is used. As shown in Figure 11.21, IDA understands how string references
work. When it sees one, it shows the string as a comment.

IDA: Basic Blocks
IDA’s graph view shows code in basic blocks. A basic block is a contiguous
sequence of instructions uninterrupted by a branching instruction or branch-
ing reference.

Consider the following simple program in pseudocode. Figure 11.22 shows
what this program looks like when disassembled in IDA.

Figure 11.20: String cross- references in IDA

Figure 11.21: Strings in IDA code view

194 Chapter 11 ■ Patching and Advanced Tooling

int main(int argc, char* argv[])
{
 return argc;
}

IDA: Functions and Variables
IDA understands many calling conventions, including cdecl. It will recognize
cdecl and knows the first argument always starts at ebp+8. IDA renames that
offset to arg_0 to make it easier to read. It will do this renaming with all of the
input variables (arg_X), as shown in Figure 11.23.

This understanding also extends to how local variables are handled on the
stack. For example, as shown in Figure 11.24, IDA will rename local variables
to var_X.

Knowing how IDA labels arguments and variables can greatly aid in function
analysis. For example, with the function shown in Figure 11.25, we can very
quickly tell it has one local variable and six input variables because we recog-
nize how IDA does its naming conventions.

Often, IDA has no information about the intent or context in which these var-
iables are used, so it labels them sequentially. As you learn about an argument,
variable, or function, you can rename it by pressing N or right- clicking the
variable label and selecting Rename.

Figure 11.22: Basic blocks in IDA

 Chapter 11 ■ Patching and Advanced Tooling 195

Figure 11.23: Function arguments in IDA

Figure 11.24: Local variables in IDA

Figure 11.25: Local variables and function arguments in IDA

196 Chapter 11 ■ Patching and Advanced Tooling

IDA: Comments
When reversing an application, it’s essential to be able to track what you’ve
figured out and done so far. In IDA, pressing ; opens up a box to enter com-
ments, as shown in Figure 11.26.

One tip is to put an identifier like “_x” in all of your comments. This gives
you something to search for to find all comments.

To start a search for comments, select Search ➪ Text, as shown in Figure 11.27.
Then, search for “_x” while selecting Find All Occurrences to find all of the
comments that you’ve placed in the program.

By using a consistent commenting style and searching for comments, it’s easy
to find places in the code that you’ve already explored. For example, as shown
in Figure 11.28, you can quickly identify locations that were marked “TODO”
for later analysis.

Figure 11.26: IDA comment window

Figure 11.27: Searching for comments in IDA

 Chapter 11 ■ Patching and Advanced Tooling 197

IDA: Paths
IDA shows three types of paths between basic blocks:

 ■ Red: Path taken if a conditional jump is not taken

 ■ Green: Path taken if a conditional jump is taken

 ■ Blue: Guaranteed path (no conditionals)

For example, consider the following code sample containing a simple if
statement:

int main(int argc, char* argv[])
{
 if (argc > 1)
 return 0;

 return argc;
}

Figure 11.29 shows how this code would look in IDA. After the conditional
block, the paths diverge. The colors aren’t shown in this book, but the left path,
which is red in IDA, shows what happens if the jump is not taken. The right
path, which is green in IDA, is followed if the conditional resolves to false.

Figure 11.28: Search results in IDA

Figure 11.29: Code paths in IDA

198 Chapter 11 ■ Patching and Advanced Tooling

Below this point, several more arrows indicate transitions between basic
blocks. Since none of these involves conditionals, they will all be blue in IDA.

IDA Patching

IDA is another tool that can be used to patch executables. As an example, con-
sider the following code:

printf("please enter the password\n");
scanf("%s", user_entered_password);
if (strcmp(user_entered_password, correct_password) == 0)
{
 printf("SUCCESS\n");
}
else
{
 printf("Failure\n");
}

This code implements a simple authentication system. It asks a user to enter
a password and checks the answer. If the answer is correct, it prints SUCCESS;
otherwise, it prints Failure. While it’s a simplistic example, keep in mind this
flow of checking the password and going one way if it’s wrong and one way if
it’s right is very common. In IDA, you can patch the application to defeat this
password verification.

By default, IDA does not show the machine code in graph view. Unless you’re
patching, it doesn’t serve much purpose. But when you start to desire patch-
ing, you’ll want to see it. To show machine code, select Options ➪ General to
open the window shown in Figure 11.30. Then, specify the number of opcode
bytes to show in graph view (most opcodes don’t exceed 8 bytes, so it’s a good
practice to set it to 8).

Figure 11.31 shows the application’s password- checking logic in IDA. As
shown, the left (red) path is taken if the passwords match, while the right (green)
path is taken if they don’t.

The instruction that decides which jump to take is jnz. Recall that jnz stands
for “jump not zero.”

This password check could be defeated in a couple of different ways. One
option is to try to figure out what needs to be “not zero.” This means figuring
out what two values it’s comparing so you can potentially make a valid key
or a cracker.

An easier alternative is to use your knowledge of x86 to patch the applica-
tion. As is, the application evaluates a condition and performs a jnz (0x75) if
the password is incorrect. But what if you did the exact opposite? Changing

 Chapter 11 ■ Patching and Advanced Tooling 199

this jnz to a jz (0x74) will reverse the logic, causing the application to accept
only incorrect passwords. With the logic flipped, an incorrect password would
result in success and a correct one would result in failure.

To change the instruction, highlight it and click Edit ➪ Patch Program ➪
Change Byte. Then, in the Patch Bytes window shown in Figure 11.32, change
the first value from 74 to 75.

Figure 11.33 shows how the application will look after the patch is applied.
The single bit that was changed will be highlighted in IDA, and the meaning of
the two paths after the jump will be reversed. Now, the application will work
for anything except the correct password.

Figure 11.30: Showing opcode bytes in IDA

Figure 11.31: Password- checking code in IDA

200 Chapter 11 ■ Patching and Advanced Tooling

Lab: IDA Logic Flows

This lab provides an introduction to using IDA for reversing. The lab files are
on the Windows VM in the ida_logic folder on the Desktop. Inside this folder
will be several binaries. Find out which of them is:

 ■ if

 ■ Multipart if (i.e., if(cont1 && cond2))

 ■ while loop

 ■ for loop

 ■ do while loop

Figure 11.32: IDA Patch Bytes window

Figure 11.33: Password- checking logic in IDA after patching

 Chapter 11 ■ Patching and Advanced Tooling 201

Skills
This lab provides practice using IDA to reverse engineer control flow graphs.
The goal is to learn to quickly identify high- level coding constructs based
on their control flow patterns.

Takeaways
Analyzing a program’s control flow can make it easier to quickly understand
what is happening inside of code. Getting good at recognizing these flows
quickly can vastly improve your reverse engineering ability.

Ghidra

Ghidra is a static analysis tool released in 2019 by the NSA. It has many simi-
larities to IDA, but unlike IDA, it is free and open source. In many situations,
Ghidra is an adequate replacement to IDA.

IDA has a much longer reputation in the space, but Ghidra is also immensely
powerful and in many cases has a lot of the same features. This example demos
IDA given its long history in the reverse engineering space, but everything
shown can also be done in Ghidra. The tools are similar enough that skills in
one will often transfer over. Try Ghidra out for some of the later, open- ended
labs in this book and your own practice.

Lab: Cracking with IDA

This lab takes a look at a more complex application in IDA. Labs and all asso-
ciated instructions can be found in their corresponding folder here:

https://github.com/DazzleCatDuo/

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab Cracking with IDA and follow the provided
instructions.

Skills
This lab practices using IDA to crack large, real- world applications. The goal is
to learn to quickly identify points of interest and to prioritize multiple cracking
approaches.

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

202 Chapter 11 ■ Patching and Advanced Tooling

Takeaways
Real- world programs are too large for uniform, fine- grained analysis. Triage is
critical to finding the points of interest.

Multiple opportunities are usually available to a cracker. Selecting which to
pursue can save (or cost) significant time.

Summary

This chapter explored some of the most widely used tools for reversing and
cracking. Take the time to become familiar with them. It’ll pay off in the long run!

C H A P T E R

203

12

How do you defend against cracking? To start, it’s essential to have a good key
check design (don’t pull a Starcraft/Half-Life). From there, you can implement
additional defensive options.

However, it’s important to remember that there is no such thing as uncrackable
software. As a defender, your job is to slow attackers down in the critical parts
of your software and make them frustrated enough they go to a different target.

Like many things in cybersecurity, you just don’t want to be the low-hanging
fruit. “When swimming in shark-infested water, you don’t have to be the fast-
est. . .just faster than the guy next to you.”

Obfuscation

Obfuscation is the practice of hiding the intended meaning of code by purpose-
fully making logic ambiguous and unclear. It can be valuable for slowing reverse
engineering to do the following:

 ■ Slow cracking

 ■ Slow tampering

 ■ Protect intellectual property

Defense

204 Chapter 12 ■ Defense

Done well, obfuscation can make code essentially unreadable. For example,
the following C code (available from www.ioccc.org/1988/phillipps.c), when
compiled and run, prints out the lyrics to the entire 12 days of Christmas song.
It was one of the IOCCC winners, which is a competition to hand-obfuscate
code. Looking at it makes my brain hurt, and I can’t guess at how long I’d have
to reverse engineer the code before I figured out what it did.

#include <stdio.h>
main(t,_,a)
char
*
a;
{
 return!
 0<t?
t<3?
 main(- 79,- 13,a+
main(- 87,1- _,
main(- 86, 0, a+1)
 +a)):
 1,
t<_?
main(t+1, _, a)
:3,
 main (- 94, - 27+t, a)
&&t == 2 ?_
<13 ?
 main (2, _+1, "%s %d %d\n")
 :9:16:
t<0?
t<- 72?
main(_, t,
"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,
 /n{n+,/+#n+,/#;\
#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l q#'+d'K#!
 /+k#;\
q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw'
 i;#){nl]!/n{n#'; \
r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#\
\
n'wk nw' iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlwb!/*de}'c ;;\
{nl'- {}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;\
#'rdq#w! nr'/ ') }+}{rl#'{n' ')# }'+}##(!!/")
:
t<- 50?
_==*a ?
putchar(31[a]):
 main(- 65,_,a+1)
:

https://www.ioccc.org/1988/phillipps.c

 Chapter 12 ■ Defense 205

main((*a == '/') + t, _, a + 1)
:
 0<t?
 main (2, 2 , "%s")
:*a=='/'||
 main(0,
 main(- 61,*a, "!ek;dc i@bK'(q)- [w]*%n+r3#l,{}:\nuwloca- O;m .vpbks,
 fxntdCeghiry")
 ,a+1);}

The concept of obfuscation has also made its way into popular culture. The
following quotes are from a scene in one of the James Bond movies, Skyfall when
Q is attempting to get into Silva’s laptop.

 ■ “There are algorithms and encryptions and asymmetrics!”

 ■ “Looks like obfuscated code to conceal its true purpose. Security through
obscurity!”

Obfuscations can be applied by hand or automatically to a program at var-
ious stages of its life cycle, including the following:

 ■ Source code

 ■ Bytecode

 ■ Object code

 ■ Binary executable code

Evaluating Obfuscation
When evaluating options for obfuscation, there are a few different factors to
consider:

 ■ Potency: How much obfuscation is applied to the program

 ■ Resilience: How well-obfuscated code holds up to attack from reverse
engineering tools

 ■ Stealth: How well-obfuscated code blends in with the rest of the program

 ■ Cost: Performance penalty of an obfuscated application

In general, these factors tend to work against each other. For example, the
more potent the obfuscation is, the less stealthy it typically is.

In practice, performance cost is often the limiting factor. However, almost
all obfuscations allow some degree of scaling/tuning based on requirements.

206 Chapter 12 ■ Defense

Automated Obfuscation
Obfuscation can be performed manually. However, it’s almost always better to
use tools to obfuscate the code. Some of the common obfuscation techniques
include the following:

 ■ Name mangling

 ■ String encryption

 ■ Control flow obfuscation

 ■ Control flow flattening

 ■ Opaque predicates

 ■ Instruction substitution

Name Mangling

Name mangling involves obfuscating function and variable names. This can be
done a few different ways, including the following:

 ■ Replace with gibberish (get_key -> aVJ230AM)

 ■ Replace with misleading name (get_key -> draw_screen)

 ■ Replace with nondescriptive name (get_key -> a)

After mangling, the purpose of functions and variables is no longer immedi-
ately apparent. For example, consider the following code sample:

public static void SelectionSort <T> (T[] data, int size)
 where T: IComparable
{
 for (int num1 = size – 1; num1 >= 1; num1- -)
 {
 T local1 = data[0];
 int num2 = 0;
 for (int num3 = 1; num3 <= num1; num3++)
 {
 if (data[num3].CompareTo(local1) > 0)
 {
 local1 = data[num3];
 num2 = num3;
 }
 }
 T local2 = data[num2];
 data[num2] = data[num1];
 data[num1] = local2;
 }
}

 Chapter 12 ■ Defense 207

After mangling, this might look something like the following:

public static void a <a> (a[] A_0, int A_1) where a:IComparable
{
 int num1 = A_1 – 1;
Label_004D:
 if (num1 < 1)
 {
 return;
 }
 a local1 A_0[0];
 int num2 = 0;
 int num3 = 1;
 while(true)
 {
 if (num3 <= num1)
 {
 if (A_0[num3].CompareTo(local1) > 0)
 {
 local1 = A_0[num3];
 num2 = num3;
 }
 }
 else
 {
 a local2 = A_0[num2];
 A_0[num2] = A_0[num1];
 A_0[num1] = local2;
 num1- - ;
 goto Label_004D;
 }
 num3++;
 }
}

In the original, it is relatively easy to determine that the code is a sort algorithm
even without the function name. However, doing so after mangling is much harder.

String Encryption

Another obfuscation technique is for the obfuscator to encrypt strings when the
executable is built. A decrypt function in the code will then decrypt individual
strings as needed at runtime. This renders tools like IDA’s string view unusable.

String encryption can have a dramatic effect on code readability. Consider
the following code:

public a() {
 this.a = "Hi, my name is Paul."
}

208 Chapter 12 ■ Defense

public static void a() {
 a a1 = new a();
 Console.WriteLine("Enter password: ");
 string text1 = Console.ReadLine();
 if (!text1.Equals(a1.a))
 {
 Console.WriteLine("Incorrect password.");
 }
 else
 {
 Console.WriteLine("Correct password.");
 }
 Console.ReadLine();
}

After string encryption, this code might look like this:

pubic a() {
 int num1 = 5;
 this.a =
a("\ue6ad\u9eb1\u94b3\uc1b7\u9ab9\ud2bb\uadbf\ua7c1\ue4c
 3\uafc5\ubbc7\ueac9\u9ccb\uafcd\ua5cf\ubed1\ufad3", num1;
}

public static void a()
{
 int num1 = 13;
 a a1 = new a();
 Console.WriteLine(a("\uf3b5\ud6b7\uceb9\uccbd\ue0bf\ub2c1\ua5c3\u
 b5c5\ubbc7\ubdc9\ua3cb\ubccd\ub4cf\ue8d1\uf4d3, num1));
 string text1 = Console.ReadLine();
 if (1text1.Equals(a1.a)) {
 Console.WriteLine(a(\uffb5\ud8b7\ud3bb\uccbd\ub2bf\ua7c1
 \ua7c3\ub2c5\ue8c7\ubac9\uadcb\ubdcd\ua3cf\ua5d1\ubb
 d3\ua4d5\ubcd7\uf4d9", num1));
 }
 else
 {
 Console.WriteLine(a("\uf5b5\ud7b7\uc8b9\ucebb\ua3bf\ub6c1
 \ue4c3\ub6c5\ua9c7\ub9c9\ubfcb\ub9cd\ubfcf\ua0d1\ub0
 d3\uf8d5", num1));
 }
 Console.ReadLine();
}

In the original, the strings make it easy to determine that this is authentica-
tion code (which is often very interesting to attackers). Without these strings,
the logic of the code is much more difficult to figure out. Keep in mind one of
the biggest struggles to cracking an application is finding the relevant code. In a

 Chapter 12 ■ Defense 209

binary with hundreds of thousands of lines of code, only five might be related to
the key checker, and using tools like strings is a powerful way to quickly hone in
on those five lines. Taking away strings is quite painful to the reverse engineer.

Control Flow Flattening

With this obfuscation technique, the control flow of each function is “flattened.”
This includes the following steps:

1. The function is collapsed into a switch statement within an infinite loop.

2. Each basic block of the original flow is assigned a state number.

3. A switch statement selects between basic blocks, dispatching them in the
correct order.

Figure 12.1 shows how the flattening process transforms an application in
IDA. While the logic is the same, the control flow is much harder to analyze.

Opaque Predicates

Opaque predicates add junk code interleaved with real code. The junk code
never executes, while the real code always executes. However, to a reverse engi-
neer, this is a good way to distract them with useless code, making them spend
hours reverse engineering junk code that is essentially irrelevant. Figure 12.2
shows an example of this in IDA.

The path is determined by an if statement that always resolves to the same
value. However, it can take time to identify (an “opaque predicate”), slowing
analysis.

Figure 12.1: Control flow flattening in IDA

210 Chapter 12 ■ Defense

Consider the following statement:

if ((a<<1)%2) { b = a * b + a; } else { a = a + b; }

Where is the junk code here?

Instruction Substitution

Instruction substitution involves replacing easily identified instructions with
complex ones that perform the same action. For example, consider the follow-
ing code:

sub edx, 0x192A6C72
neg ecx
sub edx, ecx
add edx, 0x192A6C72

What was the original operation?

Obfuscators
Obfuscators typically provide “knobs” that allow the developer to tweak the
level of obfuscation. The reason for this is that more obfuscation is not always
better. In general, increasing obfuscation decreases execution speed and increases
file size. Also, drastically increasing obfuscation does not substantially increase
the difficulty of reverse engineering. Balancing usability and security requires
finding a middle ground.

If you manage to do that, obfuscation can be a valuable tool, especially for
code that is otherwise trivial to decompile (such as the JIT languages discussed
earlier, e.g., .NET, etc.). However, it’s also important to ensure that the tool you
are using does not also provide an easily accessible de-obfuscator.

Figure 12.2: Opaque predicates in IDA

 Chapter 12 ■ Defense 211

For general-purpose obfuscation, OLLVM can be a good starting point. This tool
has a few benefits, including the fact that it works with the LLVM intermediate
representation (IR) and supports all LLVM front ends (gcc, clang) and many
source languages (C, C++, C#, Lisp, Fortran, Haskell, Python, Ruby, etc.).

The use of OLLVM is not recommended for production code. However, it
can be a good basis for custom obfuscators or simply learning/playing with
obfuscation.

In addition to OLLVM, there are numerous language-specific obfuscator tools
and tricks. Some examples include Dotfuscator for C# and Proguard for Java.

For JavaScript programs, tools such as YUICompressor and UglifyJS can be
used for obfuscation. In general, minimizers, simply as a byproduct, introduce
some reasonable level of obfuscation.

Python code can be compiled to bytecode to remove some variable names and
comments. Then, the bytecode can be obfuscated and released with a custom
interpreter. Some Python obfuscators include Tigress, BitBoost, and Opy, but
these are less popular than the ones mentioned earlier.

Defeating Obfuscators
Obfuscators are designed to protect against reverse engineering by making
it more difficult and time-consuming to perform. However, obfuscation isn’t
perfect, and as stated many times previously, motivated crackers can eventu-
ally defeat it.

Some of the ways that a reverse engineer can speed up the process of ana-
lyzing an obfuscated binary include the following:

 ■ Run traces to identify real versus fake code

 ■ Use symbolic analysis to simplify complexity

 ■ Write custom scripts to remove obfuscations

Lab: Obfuscation

This lab explores obfuscation techniques. T Labs and all associated instructions
can be found in their corresponding folder here:

https://github.com/DazzleCatDuo/

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab Obfuscation and follow the provided instructions.

Skills
This lab provides experience in circumventing obfuscation techniques using
objdump. The goal is to understand the impact of common code defense techniques.

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

212 Chapter 12 ■ Defense

Takeaways
Obfuscation techniques will slow down— but not defeat— cracking. However,
remember that sometimes slowing down is enough. Advanced reverse engineers
often have tools to automatically circumvent common obfuscations.

Anti-Debugging

Debugging is often the fastest way to reverse engineer an executable. Anti-
debugging is a series of techniques to try to stop someone from having the
ability to dynamically analyze your application with a debugger. There are
many techniques in this space, but most of them are geared at trying to check
for the presence of a debugger. A few common anti-debugging checks include
the following:

 ■ Memory checks

 ■ CPU checks

 ■ Timing checks

 ■ Exception checks

 ■ Environment checks

As with most security controls, there are usability trade-offs to anti-debugging,
code size and performance being the two most painful side effects. Because of
this, anti-debugging functionality is often added only selectively, reserving its
use for the code most likely to be attacked (key checkers, sensitive IP addresses,
etc.). But as with all security there are pros and cons; if you build a bunch of anti-
debugging checks around your sensitive code, you’re also painting a bull’s-eye
telling an attacker exactly where the interesting stuff is. So, while they might not
be able to debug it, they now know exactly where to focus with static analysis
techniques. But that doesn’t mean it’s not worth doing; static analysis might
take 100x longer than dynamic, so even if you paint arrows to your sensitive
code, forcing them to do it statically can still be a powerful tool.

The main goal with anti-debugging is to identify when a debugger is attached
and take an action. The most commonly used actions include the following:

 ■ Forcibly disconnecting the debugger

 ■ Exiting the program

 ■ Executing red herring code to waste an attacker’s time

IsDebuggerPresent()
IsDebuggerPresent is a memory check for a debugger. The function
IsDebuggerPresent, which is located in Windows.h, returns true if a program

 Chapter 12 ■ Defense 213

is being run under a debugger. The following code shows an example of how
it is used to exit an application if a debugger is attached:

if (IsDebuggerPresent())
 exit(1);

A check using IsDebuggerPresent can be defeated by placing a breakpoint
at the instruction right after the function returns. When the breakpoint triggers,
set the value of eax to 0, which tells the program that no debugger is attached.
Remember that eax holds the return value. Returning a 1 is undesirable, because
that means it detected the debugger, so instead make it return a 0. While that
seems trivial, keep in mind the game is to just make it harder. If your code has
100 of these checks, attackers wanting to debug have to track each of these
down and either manually breakpoint and change the return value every time
or start to get custom scripts going to do this change for them. Is that annoying
as an attacker? Yup.

Debug Registers
An application can also make use of the CPU’s debug registers to perform a
check for a debugger. Recall that the debugging section discussed software and
hardware breakpoints. A hardware breakpoint uses CPU hardware registers to
set itself.

These hardware breakpoints use debug registers (in x86: DR0, 1, 2, 3, 6, 7)
instead of memory modifications. It’s possible to detect debugging by exam-
ining these registers.

For example, consider the following code sample. It checks to see if any of
the debug registers are set, indicating a hardware breakpoint.

if (GetThreadContext(hThread, &ctx))
 if ((ctx.Dr0 != 0x00) || ... || (ctx.Dr7 != 0x00))
 exit(1);

The call to GetThreadContext() is crucial to this anti-debugging technique.
For those looking to bypass this technique, place a breakpoint after this call and
modify the context structure, setting the observed values of all of the debug
registers to 0x0. Again, is it doable to bypass? Yes. Is it annoying to an attacker
to have to keep doing these modifications? Yup. An annoyed attacker equals
success to a defender! Also recall we discussed that IDA 6.3 and above support
hardware breakpoints. These breakpoints don’t use the debug registers and
instead use page permissions. In other words, this type of anti-debugging check
won’t catch a hardware breakpoint.

214 Chapter 12 ■ Defense

RDTSC
RDTSC stands for the x86 instruction Read Timestamp Counter. This counter
can be used to read a timestamp from the CPU. This has lots of interesting uses,
but one of them is to perform a timing check for a debugger.

When running an application (with no debugger), the CPU is very fast, but
when a debugger is attached, it isn’t. Even if you’re not stepping and you’re just
letting the code run, it’s orders of magnitude slower than just letting the CPU
go. And it’s even slower if you’re doing something like single-stepping through
the code. With RDTSC, an application can take timestamps before and after a
block of code and measure how long the code took to execute. If the delta is
large, it’s likely that the code hit a breakpoint or was being manually stepped
through with a debugger.

The following pseudocode shows how RDTSC could be used to detect a
debugger:

a = __rdtsc();
keycheck();
b = __rdtsc();
if (b - a > 0x10000)
 exit(1);

To defeat this type of anti-debugging check, you could break on the second
call to RDTSC. You could then modify the value of either a to be closer to b or
b to be closer to a. Essentially, make the difference between the two very small
so it assumes execution went as planned. Bypassable? Yes. Annoying to have
to patch every time you debug? Yes!

Invalid CloseHandle()
The use of an invalid call to CloseHandle is an example of an exception check for
a debugger. The Windows CloseHandle function throws an exception if called
with an invalid handle while running under a debugger (and not otherwise).
An application can use this knowledge to call CloseHandle on an invalid handle
to detect the presence of a debugger.

The following code demonstrates how CloseHandle can be used to detect a
debugger:

HANDLE hInvalid = (HANDLE)0xDEADBEEF;
__try { CloseHandle(hInvalid); }
__except (EXCEPTION_EXECUTE_HANDLER) { exit(1); }

To defeat this check, set a breakpoint on CloseHandle. When the breakpoint
is triggered, modify the argument to INVALID_HANDLE_VALUE.

 Chapter 12 ■ Defense 215

Directory Scanning
Directory scanning is an environment check for a debugger. It involves scanning
the file system for installations of common debuggers and cracking tools. If
these tools are found, then the application can choose to exit.

However, this is an indiscriminate search, and these tools may not be actively
debugging the application. As a result, it hurts legitimate users of these tools.

To defeat this check, set a breakpoint on the directory traversal. Then, mask
out the tool directories so that the application doesn’t see or search them.

Offensive Anti-Debugging
Anti-debugging techniques need not be passive detection of debuggers. Many
“active defense” approaches exist, including the following:

 ■ NtUserBlockInput: Block keyboard input to the attached debugger.

 ■ NtUserFindWindowEx: Get a handle to the debugger window.

 ■ Debugger-specific attacks: For example, IDA versions older than 7.0 crash
at about 10,000 instructions without a branch.

Many more options exist. For offensive anti-debugging, first you need to
recognize the debugger is there, and then you take some type of offensive
action. Open-source plugins are available to help, including some used in the
following lab.

For defensive anti-debugging, it’s important to remember that you don’t
need to reinvent the wheel. Ready-made solutions are available, including free,
open-source Windows anti-debugger checks.

Defeating Anti-Debugging
Like other software defenses, anti-debugging code can be defeated (though if
done right, it’s painful). The first step is to find and reverse engineer the anti-
debug check. Often, this is accomplished by working backward from where
you got caught using the debugger.

Once you’ve identified the anti-debug code, you have a few different options
for defeating it, including the following:

 ■ Removing the check via nops

 ■ Placing a breakpoint on the check and modifying memory/registers to
mask the debugger

 ■ Using built-in debugger plugins or scripts

216 Chapter 12 ■ Defense

In general, it’s stealthier to mask the debugger immediately at the anti-debug
check. For example, if an application is using IsDebuggerPresent, modify the
return value of IsDebuggerPresent rather than messing with the if statement
or exit code designed to use that value.

Lab: Anti-Debugging

This lab provides practice in defeating anti-debugging techniques. Labs and all
associated instructions can be found in their corresponding folder here:

https://github.com/DazzleCatDuo/

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab Anti-Debugging and follow the provided
instructions.

Skills
This lab uses x64dbg to circumvent anti-debugging techniques. The goal is to
understand the impact of common defensive coding techniques.

Takeaways
Again, slowing down a reverse engineer is often enough; defenses don’t need
to be perfect. However, skilled reversers will have tools to overcome common
defensive techniques.

Summary

Developers want to defend themselves and their code against reversers and
crackers. This chapter explored some of the common methods for accomplishing
this, including obfuscation and anti-debugging protections.

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

C H A P T E R

217

13

The previous chapter presented some basic techniques for protecting an appli-
cation against reverse engineering and cracking. This chapter demonstrates
some more advanced techniques that are more difficult to defeat, including
tamper- proofing, packing, virtualization, and the use of cryptors.

Tamper- Proofing

One of the powerful cracking techniques we’ve covered is patching, both for
long- term cracking but also in the aid of reverse engineering. Tamper- proofing
is a series of techniques geared toward making software more difficult for an
attacker to modify. Some common approaches include the following:

 ■ Hashing

 ■ Signature

 ■ Watermark

 ■ Software guards

All of the following techniques have ways of being defeated, but (and I can’t
stress this enough) just because they have ways of being defeated doesn’t mean
they are not worth doing. Each of them provides a layer of defense in depth,
and even if the method for defeating them fits into a few sentences, this doesn’t
mean it’s easy in practice.

Advanced Defensive Techniques

218 Chapter 13 ■ Advanced Defensive Techniques

Hashing
An application can use hash functions to implement tamper- proofing via the
following steps:

1. Compute a hash of the software.

2. Embed the hash in the software.

3. Have the software check its own hash before executing.

4. Any modifications to the software modify the hash.

The defense relies on the fact that changes to the application will cause the
hash check to fail. To defeat this, an attacker will need to make their changes
and then recompute the hash after modifications and changing the checked
value or removing the hash check entirely.

Signatures
Digital signatures can provide strong data integrity and authenticity protec-
tions. They use public key cryptography where a public and private key pair
is generated. To use them for tamper- proofing, follow these steps:

1. Sign the software with a private key, creating a signature.

2. Embed the signature in the software.

3. Have the software check its signature with your public key before executing.

4. Any modifications to the software make the signature invalid.

One of the key benefits of digital signatures is that it is effectively impos-
sible to generate a valid signature without knowledge of the private key. To
defeat this type of protection, an attacker would have to remove the signa-
ture check entirely or get ahold of the private key so they can regenerate a
valid signature.

Watermark
To implement watermarking, each purchaser of your software receives a unique
version of the executable, where modifications are made to the following:

 ■ Instruction order

 ■ Function names

 ■ Parameter order

 ■ Instruction substitution

 ■ Etc.

 Chapter 13 ■ Advanced Defensive Techniques 219

The specific changes “watermark” that instance, allowing you to trace it back
to its owner, as well as detect modifications. Also, any modifications to the soft-
ware taint the watermark, making them obvious.

For an attacker to defeat this protection, they will need to identify water-
marked sections. Then, replace them with an alternate mark to hide the source
of the modified software.

Guards
With guards, code inside the program checks sensitive areas for modification.
For example, the code may specifically look at a critical jump to make sure it
still jumps to the intended location. Common areas to monitor with guards
include key checks, jump instructions, other guards, etc.

Any modifications to these sections are caught by the guards. The guards
will then change the software’s behavior (exit, change paths, undo modifi-
cations, etc.).

This defense relies on the fact that the guard is present and able to modify
the software as needed. If an attacker wants to defeat this technique, they will
need to remove the software guard code.

Packing

Packing is a broad term referring to techniques commonly used on executables
to compress and obfuscate their contents. Some common packing techniques
include the following:

 ■ Compression/encryption of data sections

 ■ Scrambling code sections

 ■ Compression/encryption of code sections

 ■ Anti- reverse engineering

One of the main advantages of packing is that it makes reverse engineering
harder. For example, a packer may include features that address many of the
common reverse engineering threats, including the following:

 ■ Anti- debugging: Packers can conceal the use of IsDebuggerPresent,
making it more difficult to detect.

 ■ Anti- virtualization: Packers can detect when an application is being
virtualized in a platform such as VMware and conceal detection code.

 ■ Anti- dumping: Packers can erase headers in memory, making it difficult
to dump memory.

220 Chapter 13 ■ Advanced Defensive Techniques

 ■ Anti- tampering: Anti- tampering can be implemented via checksums.
This includes both common ones (rolling checksum, CRC32, MD5, and
SHA- 1) and others (Tiger, Whirlpool, MD4, Adler).

Packers can use encryption to conceal their code. Often, this involves simple
algorithms, such as bitwise operators (XOR/ROL/...), LCG, RC4, and Tea.
However, more advanced encryption algorithms (DES, AES, Blowfish, Trivium,
IDEA, ElGamal, etc.) can also be used. If an application has been packed in
such a way that its code and data sections are encrypted, if you were to drop
it into one of the disassemblers or hex editors, you’d see only a small section
of code and a lot of nonsensical junk. The tiny section of code that is available
is the unpacker. For the code to run, it will need to unpack itself in memory at
runtime, but this means static analysis can’t see the rest of the code.

Packers can also use mutators (obfuscation), which alter code while keep-
ing the same instruction set and architecture. Some mutations that might be
used include reflowing and oligomorphism, or other obfuscation techniques
discussed in Chapter 12, “Defense.”

How Packers Work
The packer (a stand- alone tool) packs an executable (compresses, obfuscates,
etc.). Then, the packer adds an unpacker to the beginning of executable. When
the executable is run, the unpacker will be the first code that is run, and it will
unpack the original code and data into memory (and only memory).

Figure 13.1 shows what a packed executable will look like in IDA. IDA sees
the initial jump to the unpacker; however, the rest of the code looks like data.

Is This a Strong Protection?
In the following sections, we will talk about some protection techniques and ask
the question of if they are a strong protection. The assessments are meant to, at a
very high level, bucket which areas each protection has the strongest impact. The
focus of our book is predominately offensive, but we felt it important to take a

Figure 13.1: Packed code in IDA

 Chapter 13 ■ Advanced Defensive Techniques 221

quick look at some of the defenses. In each section, to evaluate the effectiveness
of an anti- cracking defense, we will use something called the CIA triad (CIA
stands for confidentiality, integrity, and availability). For those not familiar with
this, it’s a common way to think about security controls, as not all security con-
trols cover all three parts of the triad, so it’s important to know which is useful
in each pillar. Integrity is the authenticity of something. Is it as it was originally
intended, or has it been modified? Confidentiality is the ability of something to be
accessible to only authorized parties. Availability is the level to which something
is available to perform its intended function. These three together are commonly
known as the CIA triad. Evaluating packers against the CIA triad:

 ■ Confidentiality: Yes, aside from the unpacking portion of the code, the
rest of it is in nonreadable format.

 ■ Integrity: Yes, modifications to the binary would cause corruption of the
packed sections, causing likely application failure.

 ■ Availability: Packers can have a negative effect on performance, which
can affect availability. However, if configured carefully, this effect can be
minimized.

Defeating Packing
So, how can packers be defeated? Debug the program and watch for the program
to decrypt in memory. Once it is unpacked in memory, you can analyze it, but
any patching done will be viable only on the unpacked binary. Patching can’t
be saved back to the packed binary.

One natural thought that occurs to people is once it’s unpacked in memory,
can’t I just memory dump that out to a new unpacked binary? This is techni-
cally possible but difficult to do. Applications include a lot of startup code, and
getting it loading in the right spot in memory, setting up the stack, etc., doesn’t
naturally come from dumping memory and just calling it an EXE.

Another option is to see if you can unpack the program. Some of the common
packers out there have unpacking tools that can be used to reverse the protec-
tions put in place; some examples include UPX, MEW, and ASPack.

However, there may be no stand- alone unpacker, and the unpacking code exists
only in the packed executable. However, that doesn’t mean we’re stuck! There
are a number of great plugins and tools built specifically for this purpose, such
as OllyDumpEx and ImpRec, which aim to reconstruct the import table. This is a
complex but doable process, but not the focus of our book. However, if this is of
interest, there are some great blogs to be found online on import reconstruction.

PEiD
Often when approaching a file, it can be difficult to figure out what types of
manipulations were done to it. If you somehow know out of the gate it was

222 Chapter 13 ■ Advanced Defensive Techniques

packed with a certain tool, then it’s easy to start down that path. But cracking
doesn’t typically come with a handy playbook telling you what defenses are in
place. PEiD is a tool to detect most common packers, cryptors, and compilers
for portable execution files (e.g., applications). It can detect the signatures of
more than 470 different obfuscation tools. Another more recent tool in this space
is Detect it Easy.

As we’ve mentioned, many defensive tools such as packers and cryptors
have unpackers and decryptors as well. Identifying the one used can reduce
analysis time by an order of magnitude by allowing you to strip away many of
an application’s protections.

Figure 13.2 shows an example of using PEiD. To start, select the file to check.
PEiD will then show the details of its packing, crypting, and compiling.

Lab: Detecting and Unpacking

This lab explores how to detect and defeat the use of a common packer. Labs
and all associated instructions can be found in their corresponding folder here:

https://github.com/DazzleCatDuo/

X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES

For this lab, please locate Lab Detecting and Unpacking and follow the provided
instructions.

Skills
Packers are a common protection against reversing. This lab explores the use
of IDA, Cheat Engine, and PEiD to test the following skills:

 ■ Detecting the presence of packers

 ■ Unpacking programs with existing tools

 ■ Unpacking programs with advanced debugging

Figure 13.2: Identifying packers with PEiD

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

 Chapter 13 ■ Advanced Defensive Techniques 223

Takeaways
Off- the- shelf unpackers are available for many packers (don’t reinvent the
wheel). When unpackers are not available, the unpacked, original program can
still be manually recovered from memory.

Virtualization

Virtualization provides a form of obfuscation and packing. It translates a program
into a custom machine language and generates a virtual environment/machine
(VM) to interpret it. The VM is embedded into the application and runs when
the application is executed. Note that in this case we’re not talking about typ-
ical large virtual machines such as Windows or Linux running in a hypervi-
sor. Virtualization in this case can quite simply mean a layer of abstraction/
interpretation being added between the host (x86) and the code.

For example, consider the following simple “hello world” program:

#include <stdio.h>
int main(void)
{
 printf(“hello, world!\n”);
 return 0;
}

This program could then be compiled to an arbitrary machine language. For
example, this is what it looks like in Brain$#@!:

++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>- >>+[<]<-]>>.>- - -
 .+++++++..+++.>>.<- .<.+++.- - - - - - .- - - - - - - - .>>+.>++.#

The application is then packaged with an interpreter written in the target
architecture (i.e., x86).

#include <stdio.h>

char data[30000];
char program[30000];
int ip=0; /* instruction pointer */
int dp=0; /* data pointer */

char read_byte(void) { return getchar(); }
void write_byte(char b) { putchar(b); }

int main(void) {

224 Chapter 13 ■ Advanced Defensive Techniques

 int i=0; char b;

 do {
 b=read_byte();
 program[i]=b;
 i++;
 } while (b!='#’);
 while (1) {
 b=program[ip];
 if (b==0) {
 break;
 } else if (b=='>') {
 dp++;
 } else if (b=='<') {
 dp- - ;
 } else if (b=='+') {
 data[dp]++;
 } else if (b=='- ') {
 data[dp]- - ;
 } else if (b=='.') {
 write_byte(data[dp]);
 } else if (b==',') {
 data[dp]=read_byte();
 } else if (b=='[') {
 if (!data[dp]) {
 int c=1;
 do {
 ip++;
 if (program[ip]=='[‘) { c++; }
 else if (program[ip]==']’) { c- - ; }
 } while (c);
 }
 } else if (b==']') {
 if (data[dp]) {
 int c=1;
 do {
 ip- - ;
 if (program[ip]=='[‘) { c- - ; }
 else if (program[ip]==']’) { c++; }
 } while (c);
 }
 } else {
 /* do nothing */
 }
 ip++;
 }
 return 0;
}

This adds a layer of abstraction that a cracker or reverse engineer must get
through. First, reverse engineer the intermediate VM language. For those familiar
with the programming language Java, Java runs inside of a VM, called the Java

 Chapter 13 ■ Advanced Defensive Techniques 225

virtual machine (JVM). While that was done for portability, not security, it does
add a layer of complexity. There are other languages that run inside of a VM,
but you can also create your own (as with the example).

How Code Virtualization Works
Unlike in the simplistic example, a good virtualizer will create a unique, arbitrary
machine language on the fly, as opposed to using a static or known language.
This makes it more difficult to develop devirtualization tools.

In this case, the program logic is translated to a custom instruction set. As a
result, reversing tools are not immediately applicable because they are unable
to recover/analyze program logic. Then, the VM is compiled to the native
architecture (i.e., x86).

Reversing the application requires both of these:

 ■ Reversing the VM to decipher the custom instruction set

 ■ Reversing the application logic in the new instruction set

This process is complicated and tedious because your access to debugging is
limited. You cannot debug the target program logic directly, only the VM. Some
tools that aid in accomplishing this include Themida and VMProtect.

Layered Virtualization
Virtualization protections can be layered as in the following process:

 ■ Virtual machine VM0 implements the custom instruction set IS0.

 ■ IS0 runs the virtual machine VM1, which implements custom instruction
set IS1.

 ■ IS1 runs the original application.

An example of layered virtualization may include the following:

1. Compile the C source code to a custom language, such as DazzleZ.

2. Write the DazzleZ interpreter in a custom language such as CatCat.

3. Write the CatCat interpreter in x86.

4. Run the program on the regular x86 platform.

5. Reversing requires backing out all layers of virtualization.

Issues with Virtualization
Virtualization can be an effective tool to slow reversing and cracking. However,
it does have its downsides, including the following:

 ■ AV detection: Often, malware will use virtualization to conceal itself, so
many antivirus programs will automatically flag applications using it.

226 Chapter 13 ■ Advanced Defensive Techniques

 ■ File bloat: An application using virtualization needs to have the VM built
in, which increases file sizes.

 ■ Slowed execution: Virtualized applications need to run both the VM and
the virtualized code, slowing the application’s execution.

Layering multiple VMs compounds these size and speed issues exponentially.

Is This a Strong Protection?
Evaluating virtualization against the CIA triad has the following results:

 ■ Confidentiality: Yes, the original code is abstracted through layers of
virtualization.

 ■ Integrity: Yes, modifications to any of the layers will likely cause a ripple
effect of failures, making it difficult to patch.

 ■ Availability: Each layer added into this setup has an effect on performance.
Too many layers can dramatically affect speed and availability of code,
data fetches, etc.

Defeating Virtualization
Virtualization can be an effective defense because defeating it is time-
consuming and difficult. In general, the following process can be used to
defeat virtualization:

 ■ Reverse the code- dispatch scheme: VMs typically follow the familiar
fetch- decode- execute cycle of a CPU, which makes it possible to under-
stand how code is dispatched.

 ■ Reduce complexity: Use pattern matching, symbolic analysis, and similar
techniques to remove unnecessary complexity.

 ■ “Devirtualize” the program: Attempt to recover a representation of the
original code. However, this is not always a simple “inverse” for complex
VMs and may not be possible to recover original code, forcing you to
reverse engineer the virtualized code.

 ■ Reverse the recovered code: Use traditional tools to reverse the recovered
code. You may need to rely on static analysis if a functioning program
cannot be recovered.

Virtualization can be defeated by reverse engineering the virtual machine
and then transforming the application back into x86 machine code for anal-
ysis. Some tools that aid in accomplishing this include Themida, VMProtect,
and Tigress.

 Chapter 13 ■ Advanced Defensive Techniques 227

Cryptors/Decryptors

Cryptors encrypt the application code sections (a subset of the techniques
discussed in earlier section on packers), often to avoid malware detection.
Many anti- malware tools will analyze a piece of software prior to running and
block software based on API calls to suspicious operating system functions. By
encrypting the code section, the malware makes it impossible for anti- malware
programs to inspect the content of the application before execution.

In general, encrypted software must decrypt itself prior to execution. Typically,
this means the decryption key is somewhere within the software. Therefore,
reverse engineering should be able to find the key and decrypt the software.

However, there are some exceptions to this. For example, node- locked soft-
ware may derive a key from the specific system on which it resides. Alterna-
tively, malware may beacon to a server to retrieve a decryption key on the fly.

Is This a Useful Protection?
The benefits that cryptors provide include the following:

 ■ Confidentiality: Yes, encryption always adds a layer of confidentiality.
Only under the right circumstances will it decrypt.

 ■ Integrity: Some, most encryption algorithms add a layer of integrity pro-
tection here because modifying the encrypted data yields corruption
versus translating to modification of the end code.

 ■ Availability: None; this has no effect.

Defeating Cryptors
Most encryptors have supporting decryptors, which are tools that can automat-
ically restore the original software. Often these decryptors are just the encryptor
itself with a different input flag

If you are reversing a crypted application, decrypting will get you back to
the original binary. Since this will be much easier to analyze, see if there is an
available decryptor before you begin your Reverse Engineering. Some common
cryptors to check include Yoda’s Cryptor, Morphine, and PGMP.

Summary

In looking at defense options, there is no silver bullet. Most anti- reversing tech-
niques also have downsides.

228 Chapter 13 ■ Advanced Defensive Techniques

Obfuscation incurs performance impact and complicates legitimate debug-
ging. However, at reasonable levels, it can be a good option for slowing down
RE, especially of decompilable languages.

Anti- debugging has relatively low impact on RE time (many debuggers have
plugins to circumvent all common anti- debugging tricks) and complicates
legitimate debugging. However, it may be sufficient to thwart novice crackers.
Packers again raise the bar in level of difficulty to reverse engineering and pack,
but, that said, beware of commercial off- the- shelf (COTS) packers, which typi-
cally have corresponding, publicly available unpackers.

Cryptors and decryptors significantly complicate RE. This makes them useful
for protection of software. However, if not used carefully, they can flag common
AV as when used maliciously it can also help protect malware.

When considering if/when to use anti- reversing tools, you should weigh
the trade- offs of potency, resilience, stealth, and cost. Consider your adversary
and their goals:

 ■ Competing company (IP theft)

 ■ Casual cracker (low- hanging fruit)

 ■ Professional cracker (big/high- value targets)

Also, consider what needs to be defended:

 ■ Key check? Entire program? Most defenses can be applied to specific
functions.

 ■ Consider that adding defenses can call attention to a target.

A common falsehood is that “everything is hackable and can be reverse
engineered if someone tries hard enough, so we shouldn’t bother [protecting/
obfuscating/encrypting/etc.] it.” This is a gross misunderstanding of what
defense is supposed to achieve. Often a cracker may give up hacking, reversing,
cracking, or breaking a product just because it stopped being fun.

If you can slow down reverse engineers enough, you’ve done your job. Often,
a solid design with moderate settings of a commercial- off- the- shelf (COTS)
obfuscator is the best available option. You will need to weigh each approach
based on project needs.

There is no silver bullet. Don’t let perfect be the enemy of good. Once a rea-
sonable approach is settled on, obfuscators, anti- debugging, packers, etc., can
be built into your DevOps.

C H A P T E R

229

14

Application developers use various mechanisms to detect and protect against
reversing and cracking. However, some of these methods are more effective
than others. This chapter explores some of the most common techniques, their
relative strengths and weaknesses, and how they can be defeated.

CRC

A cyclic redundancy check (CRC) is a mathematical calculation performed on
the bytes of the data to be protected. The result is stored as the CRC, which is
often appended to the data (i.e., data data data data data data CRC). To
verify the data, recalculate and compare.

CRC algorithms have their advantages, including the following:

 ■ Fast and compact

 ■ Easy to accelerate with hardware

 ■ Quick to calculate and compare

 ■ Numerous options available (IEEE802.3, CRC- 32, etc.)

In general, CRCs are great for detecting accidental errors or modification,
such as transmission errors.

Detection and Prevention

230 Chapter 14 ■ Detection and Prevention

However, they are a poor defense against intentional errors or modifications.
CRCs can be easily recalculated and updated by an adversary. For example,
a simplistic CRC might add all of the bytes together and save the result. If a
corruption were to occur in the file somewhere in the data, then the new sum
would not match, and action could be taken. If the corruption occurred in the
CRC portion of the file, then the sum would not match the corrupted CRC, and
action could be taken. This is great for detecting if a bit got accidentally flipped
while being downloaded, for example.

But because the CRC is so trivial to recalculate, it’s simple for an attacker to
make their modifications and simply update the CRC to include their new values.

Is This a Strong Protection?
Comparing CRCs to the CIA triad yields disappointing results:

 ■ Confidentiality: None

 ■ Integrity: Very little (it’s too easy for an attacker to recalculate and put
the new CRC into the file)

 ■ Availability: None

This defense can easily be defeated by generating a new, valid CRC. Alterna-
tively, you can simply patch out the CRC check. CRCs are powerful for detecting
accidental corruption but are not useful for intentional corruption.

Code Signing

Many organizations digitally sign their code before releasing it. This is because
code signing provides two main benefits:

 ■ Authenticity: A digital signature can be generated only with the correct
private key. This proves that software came from its alleged creator.

 ■ Integrity: Changing digitally signed data invalidates its signature. Code
signing proves that software hasn’t been modified after release.

Code signing protects against a wide range of potential attacks. However,
from a cracker’s perspective, the most significant impact is that it can prevent
patching if a program checks its signature before executing.

How to Code Sign
Code signing works using public key or asymmetric cryptography. These cryp-
tographic algorithms use a pair of public and private keys. To code sign, you
first need to generate a public/private keypair.

 Chapter 14 ■ Detection and Prevention 231

Digital signatures are validated using your public key; however, you need a
way to prove that a particular public key belongs to you. This is where public
key infrastructure (PKI) comes into the picture. Using the generated public key,
you apply for a certificate from a code signing certificate authority (CA). The
CA will verify your identity and issue a digital certificate, which contains your
public key and validates your ownership of this.

With this certificate, you can now generate digital signatures. To do so, you
would generate a hash of the executable and encrypt that hash with the private
key. Then, when you distribute the executable, you would bundle the resulting
signature and your digital certificate with the executable.

While you can go through this process manually, many build tools will do
this for you. You still would need to buy a certificate and load it into your build
tool, but then you can ask the build tool to sign the application. If this is your
first exposure to PKI, know that this is intentionally just scratching the surface
of it; there are many books dedicated to just this concept.

How to Verify a Signed Application
A code signature is essentially an encrypted hash of the executable. After verifying
that the public key is valid using the associated certificate, you can decrypt the
executable’s hash. Then, you independently calculate the hash of the applica-
tion using the same hash function as the application developer. If you compare
the two hashes and they match, the application is authentic and unmodified. If
they differ, the application is fake or has been tampered with.

Most operating systems will verify code signatures for you. The OS will also
generate a warning if the public key used to generate the code signature is
unverified, as shown in Figure 14.1. However, most people will click Run anyway.

Figure 14.1: Windows warning of unverified program

232 Chapter 14 ■ Detection and Prevention

Is Code Signing Effective?
Does code signing stop all patching attacks? No.

The reason for this is that there must be a piece of unsigned code that does
the sign checking. This includes performing a few actions:

1. Calculate the hash of the code.

2. Check if this is what it should be.

 2a. If the answer is correct, run code.

 2b. If the answer is incorrect, don’t run code.

This signature verification code can’t be included in a code signature because
it needs to contain (or access) the hash value to compare against. It’s impossible
to predict what this value would be without hashing the application. If you
hashed the application (which includes this value) and included the hash in the
application, then the modified application would have a new hash.

Since the signature verification code can’t be signed, there is a different loca-
tion that could be patched to bypass code signing. However, code signing is
hands down one of the best techniques for securing software integrity against
both accidental and intentional modifications.

Code Signing vs. CRC
CRCs are commonly used to detect bit errors in data sent over a network.
However, they provide protection only against accidental changes, not inten-
tional ones. CRCs are easily recalculated by an adversary.

Code signing is as strong as your protection of the private key. Without the
private key, an attacker cannot regenerate a valid signed hash.

Is This a Strong Protection?
Code signing does a lot better than CRCs when compared to the CIA triad.

 ■ Confidentiality: None

 ■ Integrity: Yes! Fantastic

 ■ Availability: None

A more difficult approach to defeating code signing is to steal the private
signing keys and use them to digitally sign a modified version of the application.

RASP

Runtime application self- protection (RASP) embeds security into the running
application. It does so by intercepting system calls and verifying that they are

 Chapter 14 ■ Detection and Prevention 233

from an expected source. It also intercepts data manipulations and verifies that
they are coming from authorized sources.

RASP is a reactionary defense. It can be configured to “stop” attacks live. For
example, RASP can do the following:

 ■ Drop/delete a call it deems malicious, such as a suspicious SQL call into
an application.

 ■ End a user session.

 ■ Halt execution.

Function Hooking
One technique that RASP uses is function hooking. This involves overwriting
the first few bytes of a function’s code with a jump to the RASP code.

The RASP code will include checks to verify that the call is legitimate. This
can include the following:

 ■ Checking the parameters and context of the call

 ■ Checking the code has not been modified (might compare a hash of the
function with a known good hash)

At the end of the RASP code, it will then execute the overwritten code before
jumping back to the original function.

Risks of RASP
If RASP detects an attack, it can stop execution. However, this may not be accept-
able depending on the use case of your software. For example, in hospitals,
manufacturing, critical infrastructure, automobiles, and similar environments,
an application suddenly halting can pose a significant risk to health and safety.

RASP can also have its downsides even in the absence of an attack. Some
effects include the following:

 ■ Speed: Because of the function hooking, RASP has a nontrivial effect
on speed.

 ■ Size: Function hooking and lookup tables help to assure security; how-
ever, they also bloat binaries.

Is This a Strong Protection?
RASP provides mixed results when compared against the CIA benchmark:

 ■ Confidentiality: No

 ■ Integrity: Yes (for the sections that RASP is protecting, the context checking
at runtime is a very powerful check)

 ■ Availability: No (in fact can be negative)

234 Chapter 14 ■ Detection and Prevention

If RASP is correctly configured, it can be difficult to defeat. You can’t easily
patch the application if code signing is enabled, and you can’t easily reverse
the application if anti- debugging is enabled.

However, RASP does open a potential avenue for an attack against availability.
If you can identify an input that it perceives as an “attack,” you can potentially
make it shut itself down.

Allowlisting

Allowlisting, sometimes called whitelisting, is providing the execution envi-
ronment with a list of “good” things. For example, a computer may allow only
allowlisted applications to run.

There are numerous commercial products that provide allowlists. For example,
the Windows operating system has built- in software restriction policies.

From a cracking perspective, allowlisting can prevent the use of cracking
and reverse engineering tools. For example, tools such as Procmon, debuggers,
Cheat Engine, ResourceHacker, Dependency Walker, and other reversing and
cracking applications are unlikely to be included in the allowlist.

Allowlisting is difficult to get right. It can be difficult to know all of the var-
ious libraries that your application needs. When generating a whitelist, a great
deal of testing must be performed to ensure that all required applications and
libraries are included on the allowlist.

How Allowlisting Works
There are two main approaches to allowlisting. A list can be based on a pro-
cess’s name or on its hash. These lists are applied only when an application is
first launched.

Breaking Name- Based Allowlists

Allowlists keep track of the names of processes or applications allowed to exe-
cute. To bypass this type of list, name your malicious application a whitelist-
approved name. For example, you determine that solitare.exe is allowlisted,
so you name your malicious app solitare.exe.

Breaking Name and Hash- Based Allowlists

If an allowlist uses both application names and hashes, it can’t be bypassed by
renaming an application. The hash of the malicious app wouldn’t match that
of the legitimate one.

 Chapter 14 ■ Detection and Prevention 235

However, these allowlists can be defeated through process injection. Once an
allowlisted application is running, if you can get code execution, you can inject
malicious libraries. And while that’s easily said, getting code execution is not
often trivial. So, this is one of those cases where it sounds easy because it can
be said in a sentence, but in reality having a prerequisite of code execution in
a whitelisted process may be a full roadblock for a cracker.

If you have gotten the elusive code execution in an allowlisted applica-
tion, there are numerous techniques for loading into the process. In Windows,
you can use LoadLibrary() or SetWindowsHookEx(). In Linux, you can use
ptrace()/PTRACE_POKEDATA/opcodes for uselib() syscall.

An application’s hash is checked prior to application launch. Modifications
to the application after it is launched won’t be detected by the allowlist.

Example: Metasploit

Metasploit is a popular hacking tool. Its main goal is to exploit an application
and inject a meterpreter, which provides the attacker with remote access to the
infected computer. (See the “Tools” section of our repository for links.)

With Metasploit, no new applications are started; a meterpreter injects into the
hacked process. From there it can “pivot” into any other running application.

Is This a Strong Protection?
Allowlisting provides limited protection:

 ■ Confidentiality: No

 ■ Integrity: Yes (if paired with the name and hash; however, the integrity
checking is generally done only at application start time)

 ■ Availability: No

Allowlisting can be defeated in a couple of ways. A malicious program can
impersonate a legitimate application to defeat a name- based whitelist or use
code injection to defeat an allowlist that uses both names and hashes.

Blocklisting

Blocklisting, sometimes referred to as blacklisting, is the exact opposite of allow-
listing. Instead of specifying everything that is permitted, it is a list of all the
things that are not allowed. The blocklist can be based on names, keys, or hashes.

Blocklists are easy to make but difficult to maintain. For example, consider
a blocklist including the malicious executable virus1.exe. What happens next
week when virus2.exe comes out?

236 Chapter 14 ■ Detection and Prevention

From a more cracking perspective, you might blocklist keys that you know
to be bad (i.e., cracked). Depending how your key generation works, it may be
possible to blocklist whole subsets of keys.

Alternatively, a program can also refuse to run if certain other applications
are seen. For example, the application may not run if a debugger is installed.

Many antiviruses use this approach to identify and block known malware.
They include a list of “signatures” of known bad applications. If something
matches the signature, it’s flagged as bad.

Is This a Strong Protection?
A blocklist provides less protection than a whitelist:

 ■ Confidentiality: None

 ■ Integrity: Some (if paired with hashes or keys)

 ■ Availability: None

The means of defeating a blocklist depend on the information that it uses to
identify malicious applications. If it is name- based, change the name. If it stores
the hashes of known- bad programs, mutate it by making a small change to the
application’s code or data to change its hash.

Remote Authentication

For most anti- reversing and anti- cracking strategies, the attacker has all of the
pieces that they need to overcome the defense. With enough time, they can
reverse engineer and/or patch the application.

Remote authentication requires the application to retrieve something remotely
in order to work. For example, it might get a key from a remote server that it
uses to decrypt some crucial code.

Most attackers will reverse engineer a system “offline.” They don’t want
it reaching out to your servers because they don’t want you to have their IP
address or to know that they are running your software. Keep in mind when
attempting to crack a piece of software, you’re likely launching and running the
startup and checking code frequently. Whereas a legitimate user would likely
launch the application at max a few times a day. That type of behavior is really
easy to spot on a remote authentication server. A user who is authenticating
100 times a day is likely doing something nefarious.

Architecting the application in such a way that it can’t run without information
from a server helps prevent reverse engineering. The attacker will either need
to reverse it “online” or give up.

 Chapter 14 ■ Detection and Prevention 237

Remote Authentication Example
One possible approach to implement remote authentication is to encrypt every
part of the application except for the loaders. The loader sends system information,
a hash of the software, and the activation key to the server.

The server will verify the expected hash and the activation key. If they vali-
date, it uses an algorithm to produce a decryption key, which it will send back to
the application. The loader can then decrypt the application, enabling it to run.

An attacker will not be able to “mimic” your remote server and algorithm
without access to the server- side code. The only way to research the software
will be to activate it online. The application can have decryption code be resident
in memory only. This way, each startup requires server interaction.

The main challenge of this approach is that implementing cryptography
and enterprise key management solutions is not trivial. A mistake may allow
a cracker to bypass the validation code and generate their own decryption
keys. As discussed with packed applications, once it’s unpacked in memory,
you could take a memory dump of it for future static analysis. However, that
memory dump can’t easily (or sometimes not at all) be turned into a decrypted
application capable of running. The memory dump won’t be useful for patching
or testing modifications but never discount the value of static analysis.

Is This a Strong Protection?
Remote authentication provides mixed reviews when compared against the
CIA triad:

 ■ Confidentiality: Some (the application will eventually be decrypted in
memory, but the binary at rest is restricted)

 ■ Integrity: Yes (the server should be doing some type of integrity checking
prior to releasing the response)

 ■ Availability: Possibly negative

One possible attack against a remote server is to set up a fake server. To start,
activate the application online and capture all communication between the
application and server.

Then, stand up a fake server with appropriate responses. The application’s
code will be decrypted and can be saved to disk.

This approach does require a single online application to get the decrypted
code. However, this allows a full, decrypted binary to be created, making further
online authentication unnecessary. But note that this approach can’t always work
if the application does good due diligence in requiring certain certificates from
the server or if the challenge/response from the server is not always the same
(i.e., changes with time or date).

238 Chapter 14 ■ Detection and Prevention

Lab: ProcMon

This lab shows that there is more than one possible way to crack a program.
Head back to the book’s GitHub page (https://github.com/DazzleCatDuo/
X86- SOFTWARE- REVERSE- ENGINEERING- CRACKING- AND- COUNTER- MEASURES) and
locate the ProcMon lab.Skills.

This lab uses ProcMon and IDA to understand opportunities for alternative
cracking solutions. Some key skills being tested include the following:

 ■ Analyzing program behavior dynamically

 ■ Identifying indirect approaches to circumventing software defenses

Takeaways
Watching what a process does from the outside can be quicker/easier than
watching it from the inside (that is, debugging is not always the best approach).

There are usually many ways to crack a program; finding the best takes practice.

Summary

This chapter presented various methods of protecting against software cracking
and reversing. Some techniques are generally ineffective, while others can work
but also have some downsides.

It’s important to remember that almost any defense can be defeated given
enough time and effort. The goal is to slow an attacker down and, ideally, make
them frustrated enough to give up.

https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES
https://github.com/DazzleCatDuo/X86-SOFTWARE-REVERSE-ENGINEERING-CRACKING-AND-COUNTER-MEASURES

C H A P T E R

239

15

In an “Introducton” the legal implications and considerations of reverse engi-
neering and cracking were explored at a high level. This section provides a more
in-depth discussion of relevant U.S. laws and their impacts and interpretations.

 WA R N I N G As a disclaimer, we are not lawyers, and this is not legal advice. If
you need legal advice, please contact any reputable lawyer or the Electronic Frontier
Foundation at www.eff.org, which has deep specialization in the security space.

U.S. Laws Affecting Reverse Engineering

Laws regarding copyrights, hacking, etc., vary based on jurisdiction. This section
covers some applicable laws in the United States. If you are located elsewhere,
check your local laws and restrictions.

The Digital Millennium Copyright Act
Digital rights management (DRM) is a solution designed to protect intellectual
property. DRM solutions can track and control protected content after it reaches
the marketplace.

The Digital Millennium Copyright Act (DMCA) was passed by Congress in
1998. It brought the United States into compliance with international copyright
agreements.

Legal

http://www.eff.org

240 Chapter 15 ■ Legal

Computer Fraud and Abuse Act
The Computer Fraud and Abuse Act (CFAA) was enacted in 1984. It is a fed-
eral anti-hacking statute that prohibits unauthorized access to computers and
networks.

Lawmakers wrote the law so poorly that creative prosecutors have been abus-
ing it ever since. However, in recent years, efforts have been made to protect
security researchers from being prosecuted under it. Wired.com said this about
the CFAA in a 2014 article:

A high profile case involving misuse of the statute occurred in 2008 when three
MIT students were barred from giving a presentation at the Def Con hacker
conference. The students had found flaws in the electronic ticketing system used by
the Massachusetts Bay Transportation Authority that would have allowed anyone
to obtain free rides. The MBTA sought and obtained a temporary restraining order
to bar the students from speaking about the flaws. In granting the temporary
gag order, the judge invoked the CFAA, saying that information the students
planned to present would provide others with the means to hack the system. The
judge’s words implied that simply talking about hacking was the same as actual
hacking. The ruling was publicly criticized, however, as an unconstitutional
prior restraint of speech, and when the MBTA subsequently sought a court order
to make the restraining order permanent, another judge rejected the request,
ruling in part that the CFAA does not apply to speech and therefore had no
relevance to the case.

www.wired.com/2014/11/

hacker- lexicon- computer- fraud- abuse- act

A second high-profile, and very sad, abuse of the CFAA resulted in a high-profile
suicide. This came after a U.S. attorney used CFAA to launch a heavy-handed
prosecution against Internet activist Aaron Swartz for what many considered
a minor infraction. Swartz, who helped develop the RSS standard and was
a cofounder of the advocacy group Demand Progress, was indicted after he
gained entry to a closet at MIT and allegedly connected a laptop to the univer-
sity’s network to download millions of academic papers that were distributed
by the JSTOR subscription service. Swartz was accused of repeatedly spoofing
the MAC address of his computer to bypass a block MIT had placed on the
address he used.

Although JSTOR did not pursue a complaint, the Justice Department pushed
forward with prosecuting Swartz. U.S. Attorney Carmen Ortiz insisted that
“stealing is stealing” and that authorities were just upholding the law. Swartz,
in despair over his pending trial and the prospect of a felony conviction, com-
mitted suicide in 2013. In response to the tragedy, two lawmakers proposed a
long-overdue amendment to the law that would help prevent prosecutors from

http://wired.com
https://www.wired.com/2014/11/hacker-lexicon-computer-fraud-abuse-act
https://www.wired.com/2014/11/hacker-lexicon-computer-fraud-abuse-act

 Chapter 15 ■ Legal 241

overreaching in their use of it. The amendment, referred to as Aaron’s law, was
introduced months after Swartz’s death by Rep. Zoe Lofgren (D-Calif.) and
Sen. Ron Wyden (D-Oregon). The amendment would exclude breaches of terms
of service and user agreements from the law and also narrow the definition
of unauthorized access to make a clear distinction between criminal hacking
activity and simple acts that exceed authorized access on a minor level. Instead,
the amendment proposes to define unauthorized access as “circumventing
one or more technological measures that exclude or prevent unauthorized
individuals from obtaining or altering” information on a protected computer.
The amendment also would make it clear that the act of circumvention would
not include a user simply changing his MAC or IP address to gain access to
a system.

Copyright Act
Under the Copyright Act of 1976, a copyright for a computer program comes
into being as the source code for the computer program is being written by the
programmer. The program does not need to be complete or even functional for
copyright protection to come into being. Copyright case law treats the copyright
of the source code and object code as equivalent.

If you are not the copyright owner, it is typically not legal to perform any of
the following actions without permission:

 ■ Copying a program, or parts of programs, to give or sell to someone else

 ■ Preloading a program onto the hard disk of a computer being sold

 ■ Distributing a program over the Internet

 ■ Circumventing controls that prevent access to copyrighted material

However, there are many exceptions and nuances to this. The first copyright for
software was in 1964. The justification for why to begin granting protection of
software was they now viewed a computer program like a “how-to book.” The
Copyright Act of 1976 officially calls out software as copyrightable.

So, when a piece of software gets copyright protection, what exactly is copy-
righted? The copyright protects the expression of an idea, not the idea itself.
For example, if you develop the concept of a lemonade stand game, you can
copyright your implementation of it but not the idea of a lemonade stand game.
Second, the protection protects the object (executable) program, not the source
code. Lastly, it protects the screen displays produced by the program while it
executes.

The source code of software is generally kept as a trade secret and not released
under a copyright to the public.

242 Chapter 15 ■ Legal

Important Court Cases
In addition to laws, court precedent is important to determining what is and isn’t
legal in the United States. A couple of important court cases include the following:

 ■ Apple Computer v. Franklin Computer: Established that object programs
are copyrightable.

 ■ In the early 1980s Franklin Computer corporation started to produce
the Franklin Ace computer to compete with the Apple II. The Franklin
ACE was compatible with Apple 2 programs. To do that, the Franklin
Ace had copied some of the operating system functions directly from
the ROM on an Apple II. Apple sued Franklin Computers for copyright
infringement because they copied their object code. Apple won.

 ■ Sega v. Accolate: Established that disassembling object code to determine
technical specifications is fair use.

 ■ A video game maker, Accolate, wanted to make some of its games for
the Sega Genesis. However, Sega didn’t share the technical specs for
the system, so Accolade disassembled the object code of a Sega game
to determine how it worked. Sega sued Accolade for infringing on
their copyright. However, this time the court ruled in favor of Accolade,
because Accolade’s actions constituted fair use of the software.

What was gained from these two court cases was that reverse engineering was
OK as long as you didn’t infringe on the copyright. Recall Franklin Computer
infringed on the copyright by copying some of Apple’s code. Where Accolate
did not infringe the copyright, they didn’t copy any copywritten material; they
just learned from it.

One way to make sure you fall in the OK use like Accolate and not in the
copying situation like Franklin Computers is to use something known as a clean
room software strategy. This consists of having two teams that are separated; each
do different parts of the work. The first would research the competitor system
or program and write technical specifications of how it performs. The second
team would use that specification to develop the new system.

If Franklin Computer had taken this approach, it would have had some team
members figure out how the Apple system worked and describe the function-
ality. Then, if a second team implemented it themselves, never having seen the
Apple implementation, it potentially could have changed the outcome of the
event. If they had approached the situation this way they likely would have
been fine from lawsuits because they would not have used any of Apple’s code.

The key is to avoid the unconscious copying of code. If the team that researched
the Apple II had also been the team to implement the specification, they would
likely have suffered from a predisposition to use code like that in Apple’s system
because that’s what they had seen already.

 Chapter 15 ■ Legal 243

Fair Use
Sometimes it is legal to reproduce a copyrighted work without permission. In
general, courts consider four factors when evaluating whether something falls
under the fair use exceptions:

 ■ Purpose and how it’s used: If the purpose is criticism, commentary, news
reporting, teaching, or research, then it is likely permissible. However,
commercial use likely isn’t.

How about for character of use? The most important consideration is
how much the work has been transformed from the original. If the new
author has added new expressions or meaning, then it’s potentially a
candidate for fair use.

 ■ Nature of work: Fair use is granted more favorably to works of nonfiction
than of works of fiction.

 ■ Amount of work being copied: A brief excerpt is more likely to be OK
than copying an entire book or an entire chapter.

 ■ Effect on market for copyrighted work: For example, copying out-of-print
material doesn’t have the same material effect as copying a newly written
and printed work.

According to the Copyright Act, 17 U.S.C. § 107, reverse engineering falls
under “fair use” when done for “. . .purposes such as criticism, comment, news
reporting, teaching (including multiple copies for classroom use), scholarship,
or research. . . .” However, this is weighed against “the effect of the use upon
the potential market for or value of the copyrighted work.”

DMCA Research Exception
In October 2016, DMCA added a good-faith security research exception to the
law. It states that “accessing a computer program solely for purposes of good-
faith testing, . . .where such activity is carried out in a controlled environment
designed to avoid any harm to individuals or the public, . . .and is not used or
maintained in a manner that facilitates copyright infringement.”

This also can apply to reverse engineering and cracking. It states “. . .researchers
can circumvent digital access controls, reverse engineer, access, copy, and manipu-
late digital content which is protected by copyright without fear of prosecution—
within reason.”

This is not a get-out-of-jail-free card or a blank permission to go hack and
crack everything. This represents an evolution in the industry to recognize that
security research done for the right reasons is a good thing and that the law will
now protect those who are doing good faith research.

244 Chapter 15 ■ Legal

Legality
Copyright law in relation to reverse engineering and code modification heavily
emphasizes intent and effects. When proceeding on your own, consult with a
lawyer. . .or keep it to yourself. This isn’t meant in a sneaky way, but recall that
a part of fair use is the effect your work has on the market. If you’re tinkering
and cracking for education or for research and your outcomes stay with you,
they don’t really affect the potential market for the work. That’s a key factor in
fair use. The second you use your knowledge to make a keygen that you put
online that causes a vendor to lose money, then it’s no longer considered fair
use. But if you’re keeping it all to yourself in a way that doesn’t affect the market
or others, then you’ve gone a long way to fall under fair use.

 WA R N I N G To repeat, we are not lawyers, this is not legal advice, and this is our
interpretation and understanding of the regulatory landscape in the United States that
affects reverse engineering.

Summary

This chapter covered some of the legal considerations of reverse engineering
and cracking, but we are not lawyers. For legal advice, we recommend contact-
ing the EFF.

C H A P T E R

245

16

Up to this point, this book has covered the core tools and skills used for reverse
engineering and cracking. However, this is an evolving field, and new methods
are being developed to make it faster and easier. This section describes at a high
level some advanced techniques and tools on the cutting edge of reverse engi-
neering. Our goal with this chapter is that if at this point you’re still loving software
cracking and looking to take it even further to the next level, we want to present
you with a plethora of rabbit holes to go down. Depending on what interests
you, we hope the following will point you in the right directions to go deeper.

Timeless Debugging

Timeless debugging is also known as reverse debugging. The core idea is: “what
if we could go backwards when debugging?”

Consider the case where something went wrong while debugging. Maybe
a patch failed, you missed an anti-debug check, you don’t know how you got
here, etc.

There are a few different tools designed for timeless debugging, including
the following:

 ■ Visual Studio Ultimate (.NET)

 ■ rr

 ■ gdb

Advanced Techniques

246 Chapter 16 ■ Advanced Techniques

To get started, check out George Hotz @ Enigma in his 2016 USENIX Enigma
talk at www.youtube.com/watch?v=eGl6kpSajag.

Binary Instrumentation
Binary instrumentation is when you inject code to watch or modify a process
as it executes. This can be useful for finding memory leaks, tracing key checks,
performing anti-anti-debugging, etc.

Some tools for binary instrumentation include the following:

 ■ PIN

 ■ DynamoRIO

 ■ Frida

 ■ Valgrind

 ■ QBDI

For an introduction to binary instrumentation, check out the 2015 Blackhat
USA talk “Augmenting Static Analysis Using Pintool: Ablation” at www.youtube
.com/watch?v=wHIlNRK_HiQ.

Intermediate Representations
Normally, for reversing and cracking, it’s necessary to learn and write tools for
each new architecture. The idea of intermediate representations is to translate
all assembly code for all architectures to the same language. That way, you can
learn and write tools for just that language.

There are a few different tools that can be used to work with intermediate
representations, including the following:

 ■ Binary Ninja

 ■ REIL

 ■ VEX

 ■ BNIL

 ■ Ghidra PCode

 ■ IDA microcode

 ■ LLVM IR

To get started with intermediate representations, check out “Finding Bugs
with Binary Ninja” by Jordan Wiens from LevelUp 0x03 at www.youtube.com/
watch?v=55gClG- sjWc.

https://www.youtube.com/watch?v=eGl6kpSajag
https://www.youtube.com/watch?v=wHIlNRK_HiQ
https://www.youtube.com/watch?v=wHIlNRK_HiQ
https://www.youtube.com/watch?v=55gClG-sjWc
https://www.youtube.com/watch?v=55gClG-sjWc

 Chapter 16 ■ Advanced Techniques 247

Decompiling
The idea of decompiling is to recover original source code from advanced
automated analysis of assembly code. Some tools that offer decompilation
include the following:

 ■ IDA’s Hex-Rays

 ■ Ghidra

 ■ Binary Ninja

 ■ Snowman Decompiler

To learn more about decompiling, check out “Decompiling a Virus using IDA
Pro” at www.youtube.com/watch?v=gYkDcUO9otQ.

Automatic Structure Recovery
Automatic structure recovery involves automatically finding patterns and links
in memory to make inferences about the data types used. Some tools for this
include the following:

 ■ dynStruct

 ■ Cheat Engine

To learn more about automatic structure recovery, check out the dynStruct
idea and paper at https://github.com/ampotos/dynStruct.

Visualization
Code listings and text can be difficult to think and reason about. Visualization
can be used to deepen your understanding of file structure and execution.

Some reversing tools that offer useful visualizations include the following:

 ■ BinWalk

 ■ Hopper

 ■ IDA plugins

 ■ Veles

 ■ ..cantor.dust..

 ■ Cheat Engine

A good starting point for understanding how visualization can be used for
reversing includes the Derbycon talk “Dynamic Binary Visualization” from
Christopher Domas at www.youtube.com/watch?v=4bM3Gut1hIk.

https://www.youtube.com/watch?v=gYkDcUO9otQ
https://github.com/ampotos/dynStruct
https://www.youtube.com/watch?v=4bM3Gut1hIk

248 Chapter 16 ■ Advanced Techniques

Deobfuscation
Obfuscation is designed to slow down reversing in an attempt to get a cracker
to give up. The idea is to use tools to automatically remove obfuscations from
programs using tools like Tigress Protection.

Check out “Lets break modern binary code obfuscation” at www.youtube
.com/watch?v=TDnAkm6ZTYw.

Theorem Provers
Theorem provers use mathematics to analyze code, including reduction, deob-
fuscation, boundaries, inputs, etc. Some theorem proving tools for reversing
include the following:

 ■ Z3

 ■ STP

 ■ Boolector

 ■ Yices

To see how theorem provers can be used, watch “Using z3 to find a password
and reverse obfuscated JavaScript” at www.youtube.com/watch?v=TpdDq56KH1I.

Also check out the yearly SMT-COMP!, which has some really interesting
benchmarks on many unique solvers at https://smt- comp.github.io/2023.

Symbolic Analysis
The idea behind symbolic analysis is trying to find inputs that cause interesting
results. For example, what inputs could cause a crash, pass a key check, unlock
a secret, etc.

Symbolic analysis tools will trace user input through a program. At each
branch, they ask a theorem prover which user input would go down the taken
path. What user input would go down the not-taken path?

For example, consider the following code:

if (strlen(username) > 10)
 if (key_1^sum(username)==key_2)
 printf("key passed");

A symbolic analysis tool will automatically identify the combination of
username, key_1, and key_2 that will pass the checks and reach the “key passed”
print statement.

https://www.youtube.com/watch?v=TDnAkm6ZTYw
https://www.youtube.com/watch?v=TDnAkm6ZTYw
https://www.youtube.com/watch?v=TpdDq56KH1I
https://smt-comp.github.io/2023

 Chapter 16 ■ Advanced Techniques 249

Some symbolic analysis tools include the following:

 ■ Angr

 ■ Mayhem

 ■ KLEE

 ■ Triton

 ■ S2E

To see an example of symbolic analysis with Angr, check out the DEF CON
23 talk by Shoshitaishvili and Wang, “Angry Hacking: The next gen of binary
analysis,” at www.youtube.com/watch?v=oznsT- ptAbk.

Summary

At this point, the best way to improve your reversing and cracking skills is
via more hands-on practice. On the Windows VM, the allthethings folder on
the Desktop contains a variety of different crackmes to practice with sorted by
difficulty level.

https://www.youtube.com/watch?v=oznsT-ptAbk

C H A P T E R

251

17

This last chapter of this book introduces software reversing and cracking. It is
primarily focused on understanding how a program works and bypassing or
modifying undesirable functionality (like key checkers).

This chapter takes this knowledge and applies it to real-world hacking. Stack
smashing and shellcoding both use an understanding of how a program and
the stack works to run malicious code within a program.

Stack Smashing

Stack smashing, also known as stack-based buffer overflows, is one of the most classic
attacks against software. It takes advantage of the fact that non-memory-safe
languages such as C/C++ have no built-in protection that prevents an applica-
tion from accessing or overwriting data in other parts of memory. For example,
C/C++ doesn’t automatically check that the data written to an array fits within
the bounds of that array. If you don’t know C, don’t worry. As long as you know
any programming language, you should be able to follow along.

Because stack smashing has been around for such a long time, there are
numerous compilers that have built-in automatic guards that are put into com-
piled code to prevent this. While it’s not as easy of an attack as it used to be,
everyone should fully understand how the attack works, because:

Bonus Topics

252 Chapter 17 ■ Bonus Topics

 ■ Some facets of it still work.

 ■ It’s the foundation of other types of attacks.

 ■ Not every application has stack protections.

For any of the following C code examples, if you build them with gcc,
you must use the flag -fno-stack-protector to turn off these protections.
Making the full command line for using gcc to build in Linux: gcc myfile
.c-fno-stack-protector.

For example, consider the following simple C program:

void function(int a, int b, int c) {
 char buffer1[5];
 char buffer2[10];
}

void main() {
 function(1,2,3);
}

After this application has been compiled and the object has been dumped
from memory, it results in the following assembly code:

function:
 push ebp
 mov esp, ebp
 sub ebp, 20 (*stack shown here)
 leave
 ret
main:
 push ebp
 mov ebp, esp
 push 3
 push 2
 push 1
 call function
 add esp 0xc
 leave
 ret

After executing the first three instructions under function, including
sub ebp, 20, the stack will look like the following table with addresses increasing
from the top of the table going down:

NAME SIZE

buffer2 10

buffer1 5

ebp 4

 Chapter 17 ■ Bonus Topics 253

NAME SIZE

ret 4

a 4

b 4

c 4

ebp 4

Now, consider the following example code:

void function(char *str) {
 char buffer[16];

 strcpy(buffer,str); //Copies incoming str to buffer
}

void main() {
 char large_string[256];
 int i;

 for(i = 0; i < 255; i++)
 large_string[i] = 'A’; //creates a string of 255 ‘A’s

 function(large_string);
}

In this code, the main function builds a string that consists of 255 As. It then
passes a pointer to that buffer to function, and function allocates 16 bytes for
a local buffer but then copies (using strcpy) the input buffer blindly with no
length checks. This means the input buffer that was 255 As will overflow the
local buffer that was allocated only 16 bytes.

If you run the code, the result will be Segmentation fault (core dumped).
A segmentation fault occurs when an application attempts to read, write, or exe-
cute an invalid memory address. Let’s dig deeper to figure out what happened.

After assembly, the code is transformed into the following assembly code:

0804840c <function>:
 804840c: 55 push ebp
 804840d: 89 e5 mov ebp,esp
 804840f: 83 ec 28 sub esp,0x28
 8048412: 8b 45 08 mov eax,DWORD PTR [ebp+0x8]
 8048415: 89 44 24 04 mov DWORD PTR [esp+0x4],eax
 8048419: 8d 45 e8 lea eax,[ebp- 0x18] ;[1]
 804841c: 89 04 24 mov DWORD PTR [esp],eax
 804841f: e8 cc fe ff ff call 80482f0 <strcpy@plt>
 8048424: c9 leave
 8048425: c3 ret

254 Chapter 17 ■ Bonus Topics

Looking at this, you can see that ebp-0x18 is the address at the start of the
buffer (marked as [1] in the previous code). Looking at the function preamble,
with the stack setup, you can see that 0x28 bytes were allocated for the stack.
Recall that ebp points to the bottom of the stack and esp the top. Therefore,
ebp = esp+0x28.

So, at the time of function setup, the start of the array, in terms relative to esp,
starts at esp+0x10. While this seems complicated, all it means is that the buffer
is 0x10 bytes away from the end of the function’s allocated stack, which makes
sense. Recall that 0x10 is 16 in base 10, and the function is allocated 16 bytes.

To see the effects of the stack smashing in action, run the application in gdb and
set a breakpoint right before the strcpy operation. At the breakpoint, printing
memory at the stack pointer should show something similar to Figure 17.1.

In this image, the allocated buffer takes up the row indicated by address
0xffffd130, and 0x10 bytes after that is the end of the function’s stack frame.
That is then followed by the saved value of the previous stacks ebp, and lastly
the return address. The value of the saved ebp (previous functions stack frame)
register is 0xffffd278, and the return address is 0x08048470.

After stepping over the strcpy operation, the same region of memory will
look like Figure 17.2. The strcpy operation overwrites the buffer, the saved ebp
register, and the return address with 0x41 (A).

When the application reaches the ret operation, it will pop the return address
off of the stack and attempt to continue execution at that location. However,
since 0x41414141 is an invalid address, the CPU segfaults.

This example causes the application to crash, but this is not the only possible
effect. At a high level, what you have the ability to do is control the return address
and the stack frame of the previous function. While stack frame manipulation
has its uses, it’s a lot more common to go after the return address manipula-
tion, so we’ll focus on that. In the first case, the return address was overwritten
with junk, but what if we were more tactical about what we overwrite with

Figure 17.1: Function stack frame before strcpy

Figure 17.2: Function stack after strcpy

 Chapter 17 ■ Bonus Topics 255

the return address? The following code sample is designed to alter the return
address to control code execution. The goal is to skip over the x=1 instruction
in the following code:

#include <stdio.h>
void function(int a, int b, int c) {
//do something so we skip x=1 after a return
}
void main() {
 int x;
 x = 0;
 function(1,2,3);
 x = 1;
 printf("%d\n",x);
 }

In this code, the main function sets up a local variable x and gives it an initial
value of 0. It then calls function with some fixed values. Inside of function,
there is no code yet. The next step is to figure out what code is needed there to
achieve the goal of rewriting the return address.

After returning from function, the main function updates the value of x to be
1 and then proceeds to print the value of x. Can we use our knowledge of cdecl
and the stack setup to make it so the code never runs x=1 and instead prints
x=0? Yes! The challenge is to write the contents of function in such a way that
the x=1 instruction inside of the main function is skipped.

For this code, the stack inside of Function would look like the following:

NAME ADDR

ebp ebp

return address ebp+4

a ebp+8

b ebp+12

c ebp+16

This is your run-of-the-mill standard cdecl stack setup. You know you’re
going to want a buffer since this chapter is all about buffer overflows, so add
a buffer to function. You’re also going to want a way to manipulate certain
values in the buffer, so add a pointer. You could also use syntax like buffer[z],
but the pointer helps to more explicitly state memory offsets, which is helpful
for learning.

#include <stdio.h>
void function(int a, int b, int c) {
char buffer[16];

256 Chapter 17 ■ Bonus Topics

int *r;
r = 0x99; //this is here so r is not optimized out
buffer[0] = 0x88; //this is here so buffer is not optimized out
}
void main() {
 int x;
 x = 0;
 function(1,2,3);
 x = 1;
 printf("%d\n",x);
 }

When assembled, this translates to the following assembly code:

0804840c <function>:
 804840c: 55 push ebp
 804840d: 89 e5 mov ebp,esp
 804840f: 83 ec 20 sub esp,0x20
 8048412: c7 45 fc 99 00 00 00 mov DWORD PTR [ebp- 0x4],0x99
 8048419: c6 45 ec 88 mov BYTE PTR [ebp- 0x14],0x88
 804841d: c9 leave
 804841e: c3 ret

Now there are new things on the stack, the pointer and the buffer.

NAME ADDR

buffer ebp-0x14

r ebp-4

ebp ebp

return address ebp+4

a ebp+8

b ebp+12

c ebp+16

In this stack frame, the return address is at buffer+0x18. The next step is to
update function’s code to have the pointer point to this address in memory.

For those not familiar with C, & is “address of,” so the following code sets
ret to point to the address in memory where buffer+0x18 is. By drawing out
the stack, you can see that this is the saved return address. At this point, the
return address hasn’t been changed, but we have a pointer to it. The next step
is to figure out what to change it to, to skip x=1.

#include <stdio.h>
void function(int a, int b, int c) {

 Chapter 17 ■ Bonus Topics 257

 char buffer[16];
 int *ret;

 //now we have the return value, what do we do with it?
 ret = (unsigned int)&buffer+0x18;
 buffer[0] = 0x88; //this is here so buffer is not optimized out
}
void main() {
 int x;
 x = 0;
 function(1,2,3);
 x = 1;
 printf("%d\n",x);
 }

To figure out how to manipulate the return address, take a look at the assem-
bled code for main:

0804841f <main>:
 804841f: 55 push ebp
 8048420: 89 e5 mov ebp,esp
 8048422: 83 e4 f0 and esp,0xfffffff0
 8048425: 83 ec 20 sub esp,0x20
 8048428: c7 44 24 1c 00 00 00 mov DWORD PTR [esp+0x1c],0x0
 8048430: c7 44 24 08 03 00 00 mov DWORD PTR [esp+0x8],0x3
 8048438: c7 44 24 04 02 00 00 mov DWORD PTR [esp+0x4],0x2
 8048440: c7 04 24 01 00 00 00 mov DWORD PTR [esp],0x1
 8048447: e8 c0 ff ff ff call 804840c <function>
 804844c: c7 44 24 1c 01 00 00 mov DWORD PTR [esp+0x1c],0x1;x=1
 8048454: 8b 44 24 1c mov eax,DWORD PTR [esp+0x1c]
 8048458: 89 44 24 04 mov DWORD PTR [esp+0x4],eax
 804845c: c7 04 24 08 85 04 08 mov DWORD PTR [esp],0x8048508
 8048463: e8 88 fe ff ff call 80482f0 <printf@plt>
 8048468: c9 leave
 8048469: c3 ret

Normally, the return address of the function would be 0x804844C, and, looking
at that instruction, that is the x=1 that we want to avoid! After this line, the next
instruction starts at 0x8048454.

Now, there are two options for changing the return address. One is to use
the pointer to the return address to change it to be the hard-coded 0x8048454.
The problem with this approach is that the address is a virtual address chosen
at build time by the compiler, and every time you launch it, it will be the same,
until you recompile. When you recompile, there is a chance you will get new
virtual addresses. You’d need to recompile to test this theory, so this approach
is a bit rigid.

258 Chapter 17 ■ Bonus Topics

Instead, the better approach is to note that the x=1 instruction is 8 bytes long.
That will always be consistent, so the stronger approach is to add 8 bytes to the
current return address.

 N OT E When printing out assembly, gdb will often cut off the hex display, so if
you’re looking at the printout, you’ll count only 7 bytes on the x=1 line. That is simply
because it was cut off. Always do the math with the addresses to make sure you have
the right byte count.

To skip the x=1 instruction, the return address should be updated by adding
8 bytes. Adding that into the code produces the following:

#include <stdio.h>
void function(int a, int b, int c) {
char buffer[16];
int *ret;

ret = (unsigned int)buffer+0x18; //get the return value
*ret +=0x8; //increment the return value by 8
buffer[0] = 0x88; //this is here so buffer is not optimized out
}
void main() {
 int x;
 x = 0;
 function(1,2,3);
 x = 1;
 printf("%d\n",x);
 }

Running this code (with the compile flag -fno-stack-protector) should result
in the program printing out a value of 0. This indicates that the return address was
successfully modified and the program skips over the x=1 instruction. Victory!

Shellcode
The ability to modify return addresses provides control over code execution,
which is powerful. One common application of this is to “pop a shell,” providing
the ability to run more powerful commands.

To pop a shell, you need to be able to run your own, arbitrary code within
the application. To do so, you need to place shellcode within the buffer that is
being overflowed and modify the return address to point to the beginning of this
code. Shellcode quite literally means code that will launch a command prompt
(shell). The shellcode can come before or after the return address depending on
the amount of buffer space you have available. The goal is to get your shellcode
into a buffer somewhere and then modify the return address to point to it.

 Chapter 17 ■ Bonus Topics 259

The following code shows a very simple shellcode. It uses the execve Linux
syscall to execute /bin/sh, which is a common shell application. execve is asking
the Linux kernel to do something. In this case, passing in the shell application
asks Linux to launch the shell.

#include <stdio.h>

void main() {
 char *name[2];

 name[0] = "/bin/sh";
 name[1] = NULL;
 execve(name[0], name, NULL);
 exit(0);
}

This simple shellcode assembles to the following assembly code:

0804843c <main>:
 804843c: 55 push ebp
 804843d: 89 e5 mov ebp,esp
 804843f: 83 e4 f0 and esp,0xfffffff0
 8048442: 83 ec 20 sub esp,0x20
8048445: c7 44 24 18 18 85 04 mov DWORD PTR [esp+0x18],
0x8048518
 804844c: 08
 804844d: c7 44 24 1c 00 00 00 mov DWORD PTR [esp+0x1c],0x0
 8048454: 00
 8048455: 8b 44 24 18 mov eax,DWORD PTR [esp+0x18]
 8048459: c7 44 24 08 00 00 00 mov DWORD PTR [esp+0x8],0x0
 8048460: 00
 8048461: 8d 54 24 18 lea edx,[esp+0x18]
 8048465: 89 54 24 04 mov DWORD PTR [esp+0x4],edx
 8048469: 89 04 24 mov DWORD PTR [esp],eax
 804846c: e8 cf fe ff ff call 8048340 <execve@plt>
 8048471: c7 04 24 00 00 00 00 mov DWORD PTR [esp],0x0
 8048478: e8 a3 fe ff ff call 8048320 <exit@plt>

This code relies on standard C methods for execve and exit, which will move
around in memory, making it difficult to predict their addresses and embed
them in the code. Meaning that if you took this assembly code as is, dropped
the opcodes into a buffer, and updated the return address to point to it, when
the code reaches the call execve instruction, it would likely segfault. This is
because the address compiled into the shellcode is where execve was loaded
for that application (0x8048340), but that is not a universal address. You would
need to know where execve is loaded for the target application (if it even has
execve at all). This makes it necessary to find an alternative way of popping a
shell that doesn’t involve C libraries.

260 Chapter 17 ■ Bonus Topics

If you disassemble the execve and exit methods, you can see the underlying
implementation, as shown in the following code sample:

mov eax, 0xb
mov ebx, string_addr
lea ecx, string_addr
lea edx, null_string
int 0x80 ;sys call for exec
mov eax, 0x1
mov ebx, 0x0
int 0x80 ;sys call for exit
“:/bin/sh”\0

So that solves some of the struggle, and the C library calls distill down into
the int 0x80 syscalls covered earlier in the book. But now there is another
challenge: the values of string_addr and null_string are unknown since
you can’t predict where they will be loaded in memory. Again, the assembled
shellcode placed them in that local memory space (in this example 0x8048518
is the compiled address for /bin/sh), but when the shellcode is dropped into
the target buffer, those addresses will be wrong.

Making the shellcode work requires figuring out another way to find the
address that is relative and not hard-coded. One way to learn this value is to
take advantage of return addresses in function calls; again, apply your immense
knowledge of calling conventions and the stack! If a function call is placed right
before the string, then the address of the string will be at the top of the stack
within that function (because the string is sitting at the function’s return address).

To start, add in a few place holders to the existing shellcode.

jmp ??
pop esi
mov [esi+0x8],esi
mov [esi+0x7],0x0
mov [esi+0xc],0x0
mov eax, 0xb
mov ebx, esi
lea ecx, [esi+0x8]
lea edx, [0xc+esi]
int 0x80
mov eax, 0x1
mov ebx, 0
int 0x80
call ??
.string \"/bin/sh\"

This code sample takes the initial shellcode and adds two instructions to
the front and two to the end. The next step is to determine the address of the
string, which is located at the end of the assembly block. Ideally, the initial jmp
instruction should jump down to the new call at the bottom.

 Chapter 17 ■ Bonus Topics 261

Then, this call should call the new pop esi line. Why? When using a call
(instead of a jump) to get back up to the top of the code, the return address
(the next address after the call) will be placed on the stack. We have no inten-
tion of doing a normal cdecl stack setup; this is abusing x86 knowledge to do
naughty things.

After the call back up to pop esi, the top of the stack will have the return
address, which in this case is the shell string. This address can be popped off
the stack into esi and used in the previous shellcode.

Now, that sounds awesome, but there are currently placeholders for the jump
and call. To figure out where those are going to jump to, we have to count our
bytes. Here we count the compiled bytes to determine the correct offsets for
jmp and call:

jmp 0x26 # 2 bytes
pop esi # 1 byte
mov [esi+0x8],esi # 3 bytes
mov [esi+0x7],0x0 # 4 bytes
mov [esi+0xc],0x0 # 7 bytes
mov eax, 0xb # 5 bytes
mov ebx, esi # 2 bytes
lea ecx, [esi+0x8] # 3 bytes
lea edx, [0xc+esi] # 3 bytes
int 0x80 # 2 bytes
mov eax, 0x1 # 5 bytes
mov ebx, 0 # 5 bytes
int 0x80 # 2 bytes
call -0x2b # 5 bytes
.string \"/bin/sh\"

This modified code solves the problem of finding the string in memory by
making it all relative (no hard-coded addresses) and uses the fundamental work-
ings of x86 to help. The final challenge is getting the code to run, which requires
placing a binary representation of the code on the stack via a buffer overflow.

Stack Smashing and Stack Protection
As mentioned, by default many compilers now build in stack protections to pre-
vent rudimentary stack attacks. As an example, gcc and g++ after gcc 4.1 have
some built-in stack protection. To practice stack smashing, it’s necessary to
build executables using the -fno-stack-protector flag. So, what does stack
protection look like? Let’s build an example and see what it adds.

The following code sample shows a program built with stack protection
enabled:

0804845c <function>:
 804845c: 55 push ebp
 804845d: 89 e5 mov ebp,esp

262 Chapter 17 ■ Bonus Topics

 804845f: 83 ec 48 sub esp,0x48
 8048462: 8b 45 08 mov eax,DWORD PTR [ebp+0x8]
 8048465: 89 45 d4 mov DWORD PTR [ebp- 0x2c],eax
 8048468: 65 a1 14 00 00 00 mov eax,gs:0x14
 804846e: 89 45 f4 mov DWORD PTR [ebp-0xc],eax
 8048471: 31 c0 xor eax,eax
 8048473: 8b 45 d4 mov eax,DWORD PTR [ebp- 0x2c]
 8048476: 89 44 24 04 mov DWORD PTR [esp+0x4],eax
 804847a: 8d 45 e4 lea eax,[ebp- 0x1c]
 804847d: 89 04 24 mov DWORD PTR [esp],eax
 8048480: e8 bb fe ff ff call 8048340 <strcpy@plt>
 8048485: 8b 45 f4 mov eax,DWORD PTR [ebp-0xc]
 8048488: 65 33 05 14 00 00 00 xor eax,DWORD PTR gs:0x14
 804848f: 74 05 je 8048496 <function+0x3a>
8048491: e8 9a fe ff ff call 8048330 <__stack_chk
_fail@plt>
 8048496: c9 leave
 8048497: c3 ret

The bolded lines illustrate the things added by the compiler for stack pro-
tection. The compiler added code that will save the return address on function
entry and will verify that it is unchanged after a strcpy operation. The com-
piler knows calls like strcpy can be dangerous; this prevents the strcpy from
overwriting the return address.

There are a few options for protecting against stack smashing, including
gcc’s built-in stack protections, the use of memory-safe languages with bounds
checking, and Data Execution Prevention (DEP). However, buffer overflows are
still a threat in some cases because not all compilers will support stack protec-
tion or DEP, and as you can see, there is nuance to how it protects, not adding
stack guards around every single call. Yet protections are focused against specific
things like strcpy. And many compilers are pretty smart about which are most
dangerous and need protection.

Connecting C and x86

Any program that can be written in C (or any other language) can also be written
in assembly. In fact, higher-level languages are compiled into assembly before
they are run by the CPU. However, in some cases, it can be helpful to mix C and
assembly code. If you’re writing your own exploits/cracks, this is a powerful
combination. Some things are nuanced enough that you need assembly-level
control, and some things are just code that needs to happen, and it’s faster to
write it in C, so feel free to mix the two!

To call a function written in another language, it’s necessary to know where
that function is located in memory. The linker can provide this information
automatically.

 Chapter 17 ■ Bonus Topics 263

It’s also necessary to know how to pass information to that function, i.e.,
its calling convention. For this case we will assume our C functions are using
cdecl. Recall the following, with cdecl:

 ■ Arguments are passed on the stack pushed from right to left.

 ■ The caller is responsible for cleaning up the stack after the call returns.

 ■ The function’s return value is stored in eax.

 ■ The eax, ecx, and edx registers are available to the callee. The caller should
save these registers’ values if needed, and the callee should save and
restore the values of any other registers that they need.

If you follow the correct calling convention, you can call C functions from
your assembly code.

Using C Functions in x86 Code
For x86 code to use C functions, the assembly code needs to know that the C
function is defined elsewhere. This is done using the extern directive in the
assembly code. For example, to call the C function, x(), in x86, use the follow-
ing instructions:

extern x
call x

The first step to using C functions in assembly is to include the
extern function_name directive at the top of the assembly file. This tells the
assembler that you intend to use this function, but you don’t know its location
(address) yet. When you write call function_name in the assembly code, it will
initially be assembled as call 0x????????. However, the program won’t be able
to run until you put it through a linker, which will fill in the appropriate address.

The next step is to call the desired function using the cdecl calling convention.
For example, when calling the C function int add(int x, int y), you’d use the
following assembly code. Remember, arguments are pushed from right to left,
and you need to clean up the stack after the call and place the return value in eax.

push [y]
push [x]
call add
add esp, 8
mov [sum], eax

After writing the assembly code, the next step is to assemble it using nasm.
Here’s an example: nasm example.asm –o example.o.

At this point, everything will be in assembly except those placeholders. If you
had no external functions, your code would be ready to run, but since it does,

264 Chapter 17 ■ Bonus Topics

you need a linker’s help. The final step is to link your assembly code to the C
function. If you’re using gcc and calling functions from the C library, gcc can
handle this automatically. For example, gcc example.o -o example will use
the linker to fill out any addresses that it knows, transforming call 0x????????
to call 0x08048320.

For example, consider the following example, which runs
printf hello world 42:

extern printf
global main

section .text
main:

push 42
push world
push hello
call printf
add esp, 12

mov eax, 1
mov ebx, 0
int 0x80

section .data
hello: db "hello %s %d", 0xa, 0
world: db "world"

This assembly code can be assembled using nasm –f elf example.asm and
linked with gcc –m32 example.o –o example.

It can be very helpful and powerful to be able to call simple things like printf
from your assembly code while you’re testing your crack/patch ideas.

Using x86 Functions in C Code
It’s also possible to call assembly functions from C code. The C program must
have a prototype for the x86 functions that it wants to use. For example, in C, to
use the assembly function f, you need the prototype int f(void);. A prototype
is a fancy way of saying that you need to declare how that function definition
would look if it was in a higher-level language (what’s its name, what argu-
ments does it take, and what does it return).

To use x86 functions in your C code, they need to be exported from your
assembly code so that the linker can find them. To export an x86 function in
your assembly file, label it with the global directive, as shown in the following
example:

global f
f:

 Chapter 17 ■ Bonus Topics 265

 mov eax, 0xdabbad00
 ret

Then, assemble your assembly code with nasm and compile and link the
complete program with gcc.

For example, consider the following C program:

// x.c

#include <stdio.h>

int add(int,int);

int main(void)
{
 int x=add(1,2);
 printf("%d\n",x);
 return 0;
}

This program uses the add function, which is defined in the following assem-
bly code:

; y.asm

add:
 push ebp
 mov ebp, esp

 mov eax, [ebp+8]
 add eax, [ebp+12]

 leave
 ret

To link and assemble this program, run the following commands:

nasm –f elf y.asm # produces y.o object
gcc –m32 –c x.c # produces x.o object
gcc x.o y.o –o adder # produces executable adder
run with ./adder

_start vs. main()
x86 assembly programs commonly begin with a label named _start. C pro-
grams, on the other hand, start with a main() function. What’s the difference?

266 Chapter 17 ■ Bonus Topics

Execution of a program (whether written in C, assembly, or any other lan-
guage) doesn’t really start at main. For example, consider the simplest possible
C function, as shown here:

int main()
{
return 0;
}

Compiling this with gcc simple.c –o simple translates your program to
assembly. As part of this process, the compiler adds a function called _start,
and _start calls main.

The resulting compiled main function has the following assembly:

80483b4: 55 push ebp
 80483b5: 89 e5 mov ebp,esp
 80483b7: 5d pop ebp
 80483b8: c3 ret

The start function looks like this:

8048300: 31 ed xor ebp,ebp
 8048302: 5e pop esi
 8048303: 89 e1 mov ecx,esp
 8048305: 83 e4 f0 and esp,0xfffffff0
 8048308: 50 push eax
 8048309: 54 push esp
 804830a: 52 push edx
 804830b: 68 30 84 04 08 push 0x8048430
 8048310: 68 c0 83 04 08 push 0x80483c0
 8048315: 51 push ecx
 8048316: 56 push esi
 8048317: 68 b4 83 04 08 push 0x80483b4
 804831c: e8 cf ff ff ff call 80482f0 <__libc_start_main@plt>
 8048321: f4 hlt

The start function is responsible for a few different tasks, including the
following:

 ■ Initializing the frame pointer

 ■ Configuring the stack

 ■ Setting up the standard arguments (parameters to main())

 ■ Calling libc_start_main, which performs security checks, threading
subsystem, init, calls your main function, and finally calls exit()

When writing pure assembly code, you write everything yourself. You don’t
need all of the setup C does and can write your own _start function.

 Chapter 17 ■ Bonus Topics 267

When combining assembly and C, you need gcc to step in. Often, gcc wants to
provide its own _start function and expects you to provide a main() function.

When writing an assembly program that will be linked against the standard
C library, do the following:

1. Use main instead of _start (libc_start_main will call main() for you).

2. Set up a stack frame only, not the entire stack (_start has already config-
ured your stack).

3. Finish with ret, not int 0x80 (ret will return to libc_start_main, which
will call the C exit function, which will call int 0x80 for you).

4. Set the return value in eax before ret’ing (usually 0).

For example, consider the following stand-alone assembly program, which
defines its own _start:

global _start

section .text
_start:
 mov esp, stack
 mov ebp, esp

 ...

 mov esp, ebp

 mov eax, 1
 mov ebx, 0
 int 0x80

section .data
times 128 db 0
stack equ $- 4

When linking to libc, the program should use main instead.

global main

section .text
main:
 push ebp
 mov ebp, esp

 ...

 mov eax, 0
 leave
 ret

268 Chapter 17 ■ Bonus Topics

Standard Arguments
In C, arguments can be read from the command link with stdargs. For example,
main() is commonly defined as int main(int argc, char **argv), which pro-
vides access to these command-line arguments. Recall that argc is the number
of arguments passed in, and argv is an array that holds those arguments.

It’s also possible to access command-line arguments when writing a main
function in assembly. Your assembly version of main will be automatically called
with cdecl. Recall that the following:

 ■ Arguments are passed on the stack, pushed on from right to left.

 ■ Arguments are at [ebp+8], [ebp+12], etc.

 ■ argc will be the last argument and is at the top of the list of arguments
on the stack, at [ebp+8].

 ■ argv is the first argument pushed to the stack and will be at [ebp+12].

For example, the following assembly program will print the first command-
line argument:

extern printf
global main

main:
 push ebp
 mov ebp, esp

 mov eax, [ebp+12] ; load argv into eax
 push dword [eax+4] ; push argv[1]
 call printf ; print argv[1]
 add esp, 4 ; clean up stack
 mov eax, 0
 leave
 ret

Mixing C and Assembly
In C, it’s possible to switch seamlessly between C and assembly code. This is
called inline assembly, named for the fact that the assembly is inlined with your
source code.

Inline assembly is not part of the C specification, but most compilers will
support it via an extension. However, the syntax is unique for each compiler.
In gcc, this is the AT&T x86 syntax.

The basic form of this is __asm__ (“assembly code here”);. When com-
piling, gcc compiles the C code to assembly and pastes in the assembly code
from the __asm__ directive.

 Chapter 17 ■ Bonus Topics 269

For example, consider the following C program:

int main(void)
{
 // set keyboard control register

 __asm__ ("mov $0x10010001, %eax");
 __asm__ ("out %eax, $0x64");

 return 0;
}

The extended form of inline assembly lets you set advanced “constraints.”
These constraints can include the following:

 ■ Input variables: C variables that you want to manipulate using assembly.

 ■ Output variables: Values produced in the inline assembly code that you
want to use in the C code.

 ■ Clobbered registers: gcc translates the C to assembly and figures out
which registers to use. This list ensures that the registers used by the C
and assembly code won’t conflict.

Extended assembly can be specified as follows:

__asm__(
 “assembly”
 : input constraints
 : output constraints
 : clobber list
);

The following code sample shows an example of using extended assembly in C:

#include <stdio.h>

int main(void)
{
 // getting the return address for the current function

 int x;

 __asm__("\
 movl 0x4(%%ebp), %%eax \n\
 movl %%eax, %0 \n\
 "
 :"=r"(x)
 :
 :"%eax"

270 Chapter 17 ■ Bonus Topics

);

 printf("%08x\n", x);

 return 0;
}

Inline assembly is used extensively in C for the following:

 ■ An operating system kernel (check out the Linux kernel source).

 ■ Embedded systems.

 ■ Any code that needs to work with hardware.

 ■ Any code that needs to be very fast.

 ■ You’ll see it from time to time if you ever work with C, and you may need
to use it yourself.

Remember that when using inline assembly, you’ll need to add a new flag
to gcc. For example, the command gcc –masm=intel myFile.c tells gcc that
you’ve written some intel assembly into your C file.

Summary

This chapter demonstrated how to use an understanding of x86 and the stack
for hacking. By smashing the stack and inserting shellcode, a reverser can trick
a program into running the attacker’s code.

271

Wow, this has been quite a journey! We’ve covered offense to defense; high-level
languages down to assembly; registers, control flow, reverse engineering; patch-
ing, tools, techniques, and mindset. If you’ve made it this far, you have an
amazing baseline of knowledge to build from as you continue to move forward.

And as you do move forward, you will always encounter something new. At
first, it will be assembly instructions you don’t know, then defenses you’ve never
seen, then architectures you’ve never heard of, and of course the latest, greatest
tool-of-the-day or defense-of-the-year. But now that you have the basics, you’ll
find that new things become easier and easier to pick up quickly.

Now that you know mov, you can easily understand the string version movs.
You’ve worked with bit manipulations like not, so negation with neg makes
sense pretty quickly. You’ve mastered comparisons like cmp, so cmps isn’t
much of a stretch, and from there how about cmpxchg or cmpxchg16b or
lock cmpxchg8b? The gist is: now that you have the basics, it becomes increasingly
easy to understand new instructions; whether it’s ud (undefined instruction) or
gf2p8affineinvqb (Galois field affine transformation inverse), the fundamen-
tals tend to be mostly the same for everything.

But of course, learning more doesn’t end there. New instructions are great,
but if you keep on this path, you’ll soon encounter entirely new architectures.
The good news is, they also tend to follow the same basic patterns, and now
that you’ve mastered one, you’ll be able to understand new ones in no time.
x64 (64-bit x86) is easy now that you’ve done x86— just extend the registers to
64 bits (rax instead of eax, rsp instead of esp) and follow some different calling
conventions (AMD64 ABI in addition to cdecl), and you’ll be able to apply all
the same tools and techniques to 64-bit code. From there, Arm comes pretty
easily— again, it’s just new registers (r0 instead of rax), instructions (b instead

Conclusion

272 Conclusion

of jmp), and calling conventions (Arm instead of cdecl). The underlying patterns
tend to be mostly the same, so whatever your target— PowerPC, MIPS, RISC-V,
MIL-STD-1750A, etc.— you can usually learn the basics in a few hours. Expanding
to new architectures will also let you apply your skills to new devices. Whether
it’s phones, routers, cars, or satellites, the fundamentals are fairly uniform.

Naturally, as you keep advancing, you won’t just encounter new architectures;
you’ll encounter new tools as well. The good news here, too, is that they tend
to build off of the same base set of concepts. We’ve worked through a bevy of
disassemblers, hex editors, debuggers, and decompilers. Now it’s time to start
exploring new options to see what clicks with you. Ghidra, Binary Ninja, and
Cutter/radare2 are popular next steps that will build off of your experience
with IDA and offer even more ways to dissect and understand a program. As
you grow your arsenal of tools, you’ll gradually build up your own scripts,
workflows, and strategies to become increasingly proficient with more and
more difficult targets.

And, of course, if you keep at it, you’ll begin to encounter new defenses.
Whether it’s the latest anti-cheat in online gaming, a new opaque predicate
obfuscation from academia, or creative new hashing in an esoteric keychecker,
keeping up-to-date with the latest trends will help you stay sharp, whether your
passion is offense or defense. Both academic journals and cracking forums can
be fantastic resources here.

But whatever your end goals with this skill set, the singular key to moving
forward is practice. Try writing your own keychecker, and then see if you
can crack it— playing both sides at once can offer interesting insights into the
challenges and limitations of an adversary. Crackmes offer a fantastic, fun,
and (mostly) safe way to get experience in reverse engineering and software
modification on a wide variety of languages and architectures. Whenever you
have a few minutes, grab a crackme that seems in line with your experience
and skill level and see if you can defeat it; if you have a few hours, find one
that uses a language you don’t know or defenses you’ve never seen. Beyond
cracking, modifying simple programs can quickly offer new insights and expand
your skill set. Drop your favorite 90s video game into IDA and see if you can
add infinite lives; try out Ghidra on your favorite text editor and see if you
can add a secret menu. Alternatively, capture-the-flag competitions can be an
exciting way to push your reverse engineering skills to their limit, while simulta-
neously branching into new areas like binary exploitation and computer forensics.

However you proceed, stay persistent, keep practicing, and continue to push
your limits into new domains. As you do, we hope that this book has helped
you establish a broad baseline of skills and that you’ll use them to dive ever
deeper into this awesome facet of security.

273

A
absolute addressing, 27
accumulator register, 22
add instruction, 35–36, 60–61, 116
addresses

about, 9
getting in Cheat Engine, 188–189

addressing modes
about, 27
absolute addressing, 27
base + displacement addressing, 28
based-index addressing, 28–29
indexed addressing, 28
indirect addressing, 27–28

adjust flag (AF), 60
advanced techniques

about, 227–228, 245, 249
automatic structure recovery, 247
binary instrumentation, 246
cryptors/decryptors, 227
decompiling, 247
deobfuscation, 248
intermediate representations, 246
lab, 222–223

packing, 219–222
symbolic analysis, 248–249
tamper-proofing, 217–219
theorem provers, 248
timeless debugging, 245–246
virtualization, 223–226
visualization, 247

allowlisting, 234–235
AMD Omperon, 14
American Standard Code for

Information Interchange (ASCII)
about, 54–55
identifying strings, 55
manipulating, 55–56

analyzing assembly code, 65–75
AND (&&), 99
and instruction, 37
anti-debugging

about, 212, 219
debug registers, 213
defeating, 215–216
directory scanning, 215
invalid CloseHandle(), 214
IsDebuggerPresent(), 212–213

Index

274 Index ■ A–B

lab, 216
offensive, 215
Read Timestamp Counter

(RDTSC), 214
anti-dumping, 219
anti-tampering, 220
anti-virtualization, 219
API calls, 145
Apple Computer v. Franklin

Computer, 242
application binary interface

(ABI), 110
architectures

about, 12
assembly, 7–12
complex instruction set computing

(CISC) architecture, 10–12
computer, 5–7
instruction set, 9–10
microarchitectures, 9–10
reduced instruction set computing

(RISC) architecture, 10–12
32-bit x86, 14

arguments, standard, 268
arithmetic logic unit (ALU), 6
arithmetic shift, 38
arrays, 28
assembly

machine code, 7–9
mixing with C, 268–270
syntax of, 14–15

assembly code
about, 8, 75
analyzing and debugging, 65–75
binary analysis, 65–66
breakpoints, 66–67
gdb, 68–73
Immunity, 168–170
lab: Shark Sim 3000, 73–74

noise, 74–75
segmentation faults, 73

assembly programs
about, 56
American Standard Code for

Information Interchange
(ASCII), 54–56

building and linking, 48–52
building and running, 43–56
lab: Hello World, 53–54
objdump, 52–53
output, 43–46
system calls, 46–48
writing, 49–52

Athlon 64, 14
AT&T syntax, 15
authentication, remote, 236–237
authentication code, 145
authenticity, code signing and, 230
automated obfuscation, 206–210
automatic structure recovery, 247
AV detection, 225
availability, in CIA triad, 221, 226,

227, 230, 232, 233, 235, 236, 237
available registers, 113

B
base address, 20
base + displacement addressing, 28
base pointer register, 22
base register, 22
based addressing, 28
based-index addressing, 28–29
bases

about, 16
nonzero, 95

big-endian system, 20
binary analysis

debugging, 66

 Index ■ B–C 275

dynamic analysis, 65–66
static analysis, 65–66

binary instrumentation, 246
binary values, 19–20
bits, 17–18, 19
blocklisting, 235–236
blocks, in Interactive Disassembler

(IDA), 193–194
branches, 78
break keyword, 97–99
breakpoints

about, 66–67
gdb, 69–70

bridges, 6
building

jump tables, 92–94
in Linux, 48–49

bytes
about, 17–18, 19
copying in Cheat Engine, 188

C
C

connecting with x86, 262–270
functions, 263–264
mixing with assembly, 268–270

call instruction, 106, 110
call stacks, in Procmon, 158
caller cleanup, 112
calling conventions, 110–116
carry flag (CF), 58
cdecl, 112–116
central processing unit (CPU), 6
Cheat Engine

about, 184, 247
allowlisting and, 234
copying bytes, 188
getting addresses, 188–189
opening processes, 184–185

rewriting programs, 187–188
string references, 187
viewing memory, 185–186

CIA triad, 221
clobbered registers, 269
CloseHandle(), 214
cmp instruction, 61–63, 80–81
code

iteratively annotating, 145–146
signing, 230–232

code blocks, removing, 82
code-dispatch scheme, 226
CodeFusion, patching with, 182–184
Comet Cursor, 141
comments, in Interactive

Disassembler (IDA), 196–197
commercial off-the-shelf (COTS)

packers, 228
compiler boilerplate, 75
compilers and optimizers

about, 127, 130
finding starting code, 127–130
linking, 134–136
optimization, 130–132
stripping, 132–134

complex instruction set computing
(CISC) architecture, 10–12

computer architecture
about, 5, 9–10
bridges, 6
central processing unit (CPU), 6
memory, 6–7
peripherals, 6
registers, 6–7

Computer Fraud and Abuse Act
(CFAA), 240–241

computer support, for x86, 13
condition codes

about, 57, 64

276 Index ■ C–D

add instruction, 60–61
carry flag (CF), 58
cmp instruction, 61–63
eflags register, 58
operations affecting status

flags, 60–63
other status flags, 60
overflow flag (OF), 59–60
sign flag (SF), 59
sub instruction, 61
test instruction, 63
zero flag (ZF), 59

conditional jumps, 79–81
confidentiality, in CIA triad, 221,

226, 227, 230, 232, 233, 235,
236, 237

constants, 50
continue command, 71–72, 96–97
control flags, 58
control flow

about, 75, 77–78
adding comments to complex, 145
conditional jumps, 79–81
flattening, 209
instruction pointer, 78
instructions, 78–81
jmp instruction, 78–79

control units, 6
conventions, calling, 110–116
Copyright Act (1976), 241, 243
cost, obfuscation and, 205
counter register, 22
cracking

about, 147, 177
debugging with immunity, 168–176
key checkers, 147–151
key generators, 151–154
lab, 155, 176–177
other debuggers, 167–168

patching, 165–167
Procmon for, 155–160
Resource Hacker, 160–165

crackmes, 137
CRC32 algorithm, 154
cryptors/decryptors, 227
curly braces ({}), 82
cyclic redundancy check

(CRC), 229–230

D
Dalvik, 2
data

global, 50–51
specifying length for, 23–26

Data Execution Prevention
(DEP), 262

data flows, 145
data formats

about, 9
global, 50–51

data register, 22
data representation

binary values, 19–20
bits, 17–18
bytes, 17–18
number system bases, 16–17
words, 17–18

.data section, 49
debug registers, 213
debuggers

allowlisting and, 234
other, 167–168

debugging
assembly code, 65–75
with Immunity, 168–176
timeless, 245–246
with GNU Debugger (gdb), 68–73

dec instruction, 35

 Index ■ D–F 277

decompilation
about, 1–2, 12
of JIT programming languages, 2–4
lab for, 4–5
uses for, 2

decompiling, 247
decryptors/cryptors, 227
defense

about, 203, 216
anti-debugging, 212–216
obfuscation, 203–212

Demand Progress, 240
deobfuscation, 248
Dependency Walker

about, 143–144
allowlisting and, 234

destination index register, 22
detection and prevention

about, 229, 238
allowlisting, 234–235
blocklisting, 235–236
code signing, 230–232
cyclic redundancy check

(CRC), 229–230
lab, 238
remote authentication, 236–237
runtime application self-protection

(RASP), 232–234
Digital Millennium Copyright Act

(DMCA), 239
digital rights management

(DRM), 239
digital signatures, 150, 231
digitally signed keys, 150
direction flag (DF), 60
directory scanning, 215
disassembly, with gdb, 69
div instruction, 36
DMCA research exception, 243

Domas, Christopher, 247
double-byte, 18
doubleword (DWORD), 18
do...while loop, 87–88
dynamic linking, 134–135
dynStruct, 247

E
eax register, 22, 81
ebp register, 22, 116, 118,

119–121, 122
ebx register, 22
echo command, 140–141
ecx register, 22, 81
edi register, 22
edx register, 22
eflags register, 23, 58
eip register, 23, 78
ELF, 48–49
else if statement, 85–87
encoding data in keys, 151
encryption, string, 207–209
endianness, 20
Enigma, 246
epilogues, 117
esi, 22
esp, 23
evaluating obfuscation, 205
examples, of x86 assembly

instructions, 35, 37, 40
exceptions, in Immunity, 173–174

F
fair use, 243
file bloat, 226
file operations, in Procmon,

158–160
flags register, 23
for loop, 90–91

278 Index ■ F–I

format, of x86 assembly
instructions, 31–32

function calls
about, 75, 106, 123–125
conventions for, 110–116
functions in x86, 106–110

function hooking, 233
function parameters, 145
functions

C, 263–264
Interactive Disassembler

(IDA), 194–195
x86, 264–265

G
general-purpose registers

(GPRs), 21–22
GetThreadContext(), 213
Ghidra, 5, 201
global data, 50–51
global variables, 27
GNU Debugger (gdb)

about, 68
debugging with, 68–73

GNU linker, 49
goto statement, 82, 84
guards, 219

H
halfword, 18
hardware breakpoints, 67
hash-based allowlisting, 234–235
hashing, 218
hex editors, 179
hexadecimal, 16–17
Hotz, George, 246

I
IDA’s Hex-Rays Decompiler, 5
if statement, 82–83, 85–87

if...else statement, 83–87
Immunity

about, 168
assembly, 168–170
exceptions, 173–174
labs, 176–177
modules, 170
rewriting program, 174–176
running program, 172–173
strings, 170–172

inc instruction, 35
indexed addressing, 28
indirect addressing, 27–28
info breakpoints command, 70
info commands, 70–71
info files command, 70
info register command, 70
info variables command, 70
inline assembly, 268
input variables, 269
instruction pointer, 78
instruction pointer register, 23
instruction set architectures (ISA),

9–10, 14–15
instruction substitution, 210
integrity

in CIA triad, 221, 226, 227, 230, 232,
233, 235, 236, 237

code signing and, 230
Intel Prescott, 14
Intel Software Developer’s

manual, 14
Intel syntax, 15
Interactive Disassembler (IDA)

about, 190–191
basic blocks, 193–194
comments, 196–197
functions, 194–195
labs, 200–202

 Index ■ I–L 279

patching, 198–200
paths, 197–198
strings, 192–193
variables, 194–195

intermediate language (IL), 2
intermediate representations, 246
interrupt enable flag (IF), 60
I/O bus, 6
IsDebuggerPresent, 212–213

J
Java, 2
Java Virtual Machine (JVM), 2
JetBrains dotPeek, 2
jle instruction, 79–80
jmp instruction, 78–79
JSTOR, 240
jump tables

building, 92–94
impractical, 95–96

jumps
about, 78
conditional, 79–81

just-in-time (JIT) languages
about, 2
decompiling, 2–4
defending, 3–4

K
key checkers

about, 147–151
cracking different types of,

153–154
key generators

about, 151
cracking different types of key

checks, 153–154
philosophy of, 152–153
reasons for building, 152

keyboard shortcuts, for
Immunity, 170

key-genning, patching compared
with, 165–166

keygens, 154–155

L
labels, 49–50
labs

anti-debugging, 216
decompiling, 4–5
detection and prevention, 238
Hello World, 53–54
Immunity, 176–177
Interactive Disassembler

(IDA), 200–202
keygens, 155
LaFarge, 190
obfuscation, 211–212
packing, 222–223
ProcMon, 238
reverse engineering, 138
Shark Sim 3000, 73–74
Windows Calculator, 162–165

LaFarge, 190
last-in-first-out (LIFO) structure, 100
launching gdb, 68
layered virtualization, 225
lea instruction, 39
legal

about, 239, 244
DMCA research exception, 243
fair use, 243
U.S. laws affecting reverse

engineering, 239–242
linking

about, 134
dynamic, 134–135
in Linux, 48–49

280 Index ■ L–O

security impacts of, 135–136
static, 134

Linux, building and linking
in, 48–49

little-endian system, 20
load effective address, 39
local variables, 121–122, 145
Lofgren, Zoe, 241
logic constructs

AND (&&), 99
about, 81–82
break keyword, 97–99
continue keyword, 96–97
do...while loop, 87–88
else statement, 85–87
if statement, 82–83, 85–87
if...else statement, 83–87
for loop, 90–91
OR (||), 100
switch statement, 91–96
while loop, 88–89

logical shift, 38
ltrace, 140–143

M
machine code, 7–9
machine instructions, 9
main function, 255, 265–267
market share, of x86, 13
memory

about, 6–7, 72–73
viewing in Cheat Engine, 185–186

memory access
about, 24
specifying data lengths, 24–26

Metasploit, 235
microarchitectures, 9–10
missing cases, 94–95
modules, in Immunity, 170

mov instruction, 33–34, 41
mul instruction, 36

N
name mangling, 206–207
name-based allowlists, 234–235
.NET, 2–3
Netwide Assembler, 48
nexti command, 72
nibble, 18
no operation, 39
noise, 74–75
nonzero bases, 95
nop instruction, 39, 166–167
not instruction, 37–38
notepad.exe, 155–158
number system bases, 16–17

O
obfuscation

about, 203–205
automated, 206–210
evaluating, 205
lab, 211–212
obfuscators, 210–211

obfuscators, 210–211
objdump, 52–53, 139
Object Dump (objdump), 52–53, 139
octoword, double quadword

(DQWORD), 18
offensive anti-debugging, 215
offline activation, 151
OLLVM, 211
OllyDbg, 167–168
one’s complement, 37–38
opaque predicates, 209–210
operating system (OS), 46
optimizers. See compilers and

optimizers

 Index ■ O–R 281

OR (||), 100
or instruction, 37
Ortiz, Carmen, 240
output

about, 43–46
controlling pins, 45

output variables, 269
overflow flag (OF), 59–60

P
packing

about, 219–220
defeating, 221
how packers work, 220
lab, 222–223
PEiD, 221–222
protection and, 220–221

parameters
accessing, 115–116, 119–121
location of, 110
ordering of, 110

parity flag (PF), 60
partial key verification, 151
patching and advanced tooling

about, 179, 202
Cheat Engine, 184–189
CodeFusion patching,

182–184
Ghidra, 201
Interactive Disassembler

(IDA), 190–200
key-genning compared

with, 165–166
lab: cracking LaFarge, 190
lab: cracking with IDA, 201–202
lab: IDA logic flows, 200–201
nop, 166–167
patching in 010 Editor, 179–182
where to use, 166

paths, in Interactive Disassembler
(IDA), 197–198

PEiD, 221–222
peripherals, 6
pins, controlling, 45
pointers, 27–28
pop instruction, 103–106
ports, for x86, 44–45
potency, obfuscation and, 205
prevention. See detection and

prevention
printf function, 72
printing strings, 47–48
processes, opening in Cheat

Engine, 184–185
ProcMon

about, 155–160
allowlisting and, 234
lab, 238

programs, rewriting in Cheat
Engine, 187–188

prologues, 117
public key infrastructure (PKI), 231
push instruction, 102–103

Q
quad-byte, 18
quadword (QWORD), 18

R
Read Timestamp Counter

(RDTSC), 214
readability, 19
reduced instruction set computing

(RISC) architecture, 10–12
register access, 110
registers

about, 6–7, 9, 20–21
saving, 113–114

282 Index ■ R–S

working with, 23–24
in x86, 21–23

registry queries, in Procmon, 160
remote authentication, 236–237
resilience, obfuscation and, 205
Resource Hacker (ResHacker/

ResHack)
about, 160–165
allowlisting and, 234

ret instruction, 106–110
return address, 108
return values, 111, 113, 114–115
reverse engineering

about, 137, 138–139
dependency walking, 143–144
lab, 138
ltrace, 140–143
Object Dump (objdump), 139
strace, 140–143
strategy for, 144–146
strings, 143
U.S. laws affecting, 239–242

run command, 71–72
runtime application self-protection

(RASP), 232–234

S
sal instruction, 38
sar instruction, 38
saving registers, 113–114
sections, 49
security, linking and, 135–136
Sega v. Accolate, 242
segmentation faults (segfaults), 73
shellcode, 258–261
shl instruction, 38
shr instruction, 38
sign flag (SF), 59
signatures, 218
64-bit registers, 23

software breakpoints, 67
software restriction policies, 234
source index register, 22
special-purpose registers (SPRs),

21, 23, 57
stack frames

about, 106, 116
accessing parameters, 119–121
epilogues, 117
local variables, 121–122
prologues, 117
setting up, 117–118
shortcuts, 122
stack alignment, 122–123
stack analysis, 110
tearing down, 118–119

stack pointer register, 23
stack protection, 261–262
stack smashing, 251–258, 261–262
stack-based buffer overflows,

251
stack-based parameters, 112
stacks

about, 100–101
alignment of, 122–123
cleanup of, 110
how it works, 101
x86, 101–106

standard arguments, 268
_start, 265–267
starting code

finding, 127–130
in gdb, 69

stat, 49
static linking, 134
status flags

about, 58
operations affecting, 60–63

stealth, obfuscation and, 205
stepi command, 71–72

 Index ■ S–X 283

stopping code in gdb, 69
strace, 140–143
strategies, for reverse

engineering, 144–146
string encryption, 207–209
string references, in Cheat

Engine, 187
strings

about, 51
ASCII, 53
Immunity, 170–172
Interactive Disassembler

(IDA), 192–193
printing, 47–48
reverse engineering and, 143

stripping, 132–134
structs, 29
sub instruction, 35–36, 61
Swartz, Aaron, 240–241
switch statement, 91–92
symbolic analysis, 248–249
syntax, assembly, 14–15
sys_exit function, 47
system calls

about, 46
printing strings, 47–48
sys_exit, 47
sys_write, 46–47

system flags, 58
system input, 145
sys_write function, 46–47

T
tamper-proofing

about, 217
guards, 219
hashing, 218
signatures, 218
watermark, 218–219

test instruction, 63

.text section, 49
theorem provers, 248
32-bit x86 architecture, 14, 18, 20, 23
timeless debugging, 245–246
times prefix, 51–52
trap flag (TF), 60

U
ubiquity, of x86, 13
Unicode Transformation Format

(UTF), 52
USENIX Enigma, 246
user input, 145

V
variables

Interactive Disassembler
(IDA), 194–195

local, 121–122, 145
virtualization

about, 223–225
defeating, 226
how it works, 225
issues with, 225–226
layered, 225
protection and, 226

visualization, 247

W
watermarks, 218–219
while loop, 88–89
Wiens, Jordan, 246
WinDbg, 168
Windows Calculator, 162–165
words, 17–18
write command, 141
Wyden, Ron, 241

X
x command, 72–73
x86

284 Index ■ X–Z

about, 13–14, 29
addressing modes, 27–29
assembly syntax, 14–15
connecting with C, 262–270
data representation, 16–20
logic constructs in, 81–100
memory access, 24–26
milestones for, 14
registers in, 20–24

x86 assembly instructions
about, 31, 32–33, 40–41, 42
add instruction, 35–36
common mistakes with,

41
dec instruction, 35
div instruction, 36
example of, 35, 37, 40
format, 31–32
inc instruction, 35
and instruction, 37
lea instruction, 39

mov instruction, 33–34, 41
mul instruction, 36
nop instruction, 39
not instruction, 37–38
or instruction, 37
sal instruction, 38
sar instruction, 38
shl instruction, 38
shr instruction, 38
sub instruction, 35–36
xor instruction, 37

x86 functions, 264–265
x86 stack, 101–106
x86dbg, 168
xor instruction, 37

Z
zero flag (ZF), 59, 80
010 Editor, patching in, 179–182
zero-extension, 19, 38
zero-padded, 19

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	About the Authors
	About the Technical Writer
	About the Technical Editor
	Contents at a Glance
	Contents
	Introduction
	Who Should Read This Book
	What to Expect from This Book
	History
	Legal

	Chapter 1 Decompilation and Architecture
	Decompilation
	When Is Decompilation Useful?
	Decompiling JIT Programming Languages
	Defending JIT Languages

	Lab 1: Decompiling
	Skills to Practice
	Takeaways

	Architecture
	Computer Architecture
	The Central Processing Unit
	Bridges and Peripherals
	Memory and Registers

	Assembly
	Introduction to Machine Code
	From Machine Code to Assembly
	Instruction Set Architectures and Microarchitectures
	RISC vs. CISC Computer Architectures

	Summary

	Chapter 2 x86 Assembly: Data, Modes, Registers, and Memory Access
	Introduction to x86
	Assembly Syntax
	Data Representation
	Number System Bases
	Bits, Bytes, and Words
	Working with Binary Values
	Zero-Extension and Readability
	Bit and Byte Significance
	Endianness

	Registers
	Registers in x86
	x86 General-Purpose Registers
	Special-Purpose Registers

	Working with Registers
	64-Bit Registers

	Memory Access
	Specifying Data Lengths

	Addressing Modes
	Absolute Addressing
	Example: Global Variables

	Indirect Addressing
	Example: Pointers

	Base + Displacement Addressing
	Indexed Addressing
	Example: Arrays

	Based-Index Addressing
	Example: Structs

	Summary

	Chapter 3 x86 Assembly: Instructions
	x86 Instruction Format
	x86 Instructions
	mov
	Hands-on Example

	inc, dec
	add, sub
	mul
	div
	Hands-on Example

	and, or, xor
	not
	shr, shl
	sar, sal
	nop
	lea
	Hands-on Example

	Putting It All Together
	Common x86 Instruction Mistakes
	When In Doubt, Look It Up

	Summary

	Chapter 4 Building and Running Assembly Programs
	Output
	Controlling Pins
	Tedium

	System Calls
	sys_write
	sys_exit
	Printing a String

	Building and Linking
	Building and Linking in Linux
	Writing an Assembly Program
	Sections and Stat
	Labels
	Constants
	Global Data
	Strings
	times
	$

	objdump
	Lab: Hello World
	Skills
	Takeaways

	ASCII
	Identifying ASCII Strings
	ASCII Manipulation Tip

	Summary

	Chapter 5 Understanding Condition Codes
	Condition Codes
	eflags
	Carry Flag
	Zero Flag
	Sign Flag
	Overflow Flag
	Other Status Flags

	Operations Affecting Status Flags
	add
	sub
	cmp
	test

	Summary

	Chapter 6 Analyzing and Debugging Assembly Code
	Binary Analysis
	Static and Dynamic Analysis
	Debugging

	Breakpoints
	Software Breakpoints
	Hardware Breakpoints

	gdb
	Debugging with gdb
	Launching gdb
	Disassembly with gdb
	Starting and Stopping Code in gdb
	gdb Breakpoints
	gdb info Commands
	Stepping Through Instructions
	Examining Memory

	Segmentation Faults
	Lab: Shark Sim 3000
	Skills
	Takeaways

	Tuning Out the Noise
	Summary

	Chapter 7 Functions and Control Flow
	Control Flow
	The Instruction Pointer
	Control Flow Instructions
	jmp
	Conditional Jumps
	Pitfalls of Conditional Jumps
	Example

	Logic Constructs in x86
	if (. . .) {. . .}
	if (. . .) { . . . } else { . . . }
	if (. . .) { . . . } else if { . . . } else { . . . }

	do { . . . } while (. . .);
	while (. . .) { . . . }
	for (. . .; . . .; . . .) { . . . }
	switch (. . .) { . . . }
	Building a Jump Table

	Continue
	break
	&&
	||

	Stack
	How the Stack Works
	The x86 Stack
	Push and Pop
	The Stack as a Scratch Pad
	Using Pop Cautiously

	Function Calls and Stack Frames
	Functions in x86
	call
	ret

	Stack Analysis
	Calling Conventions
	Why Conventions Are Necessary
	Introduction to Calling Conventions

	cdecl
	Saving Registers
	Return Values
	Accessing Parameters

	Stack Frames
	Prologues and Epilogues
	Accessing Parameters
	Local Variables
	Shortcuts
	Stack Alignment

	The Big Picture
	Things to Memorize

	Summary

	Chapter 8 Compilers and Optimizers
	Finding Starting Code
	Compilers
	Optimization
	Stripping
	Linking
	Static Linking
	Dynamic Linking
	Security Impacts of Linking

	Summary

	Chapter 9 Reverse Engineering: Tools and Strategies
	Lab: RE Bingo
	Skills
	Takeaways

	Basic REconnaissance
	objdump
	strace and ltrace
	ltrace
	strace
	strace Example: echo
	strace Example: Malicious Kittens

	strings
	Dependency Walker

	Reverse Engineering Strategy
	Find Areas of Interest
	Iteratively Annotate Code

	Summary

	Chapter 10 Cracking: Tools and Strategies
	Key Checkers
	The Bad Way
	A Reasonable Way
	A Better Way
	Digitally Signed Keys

	The Best Way
	Other Suggestions
	Prefer Offline Activation
	Perform Partial Key Verification
	Encode Useful Data in the Key

	Key Generators
	Why Build Key Generators?
	The Philosophy of Key Generation
	Cracking Different Types of Key Checks
	Key Check Type I: Transform Just the Username
	Key Check Type II: Transform Both
	Key Check Type III: Brute Forceable

	Defending Against Keygens

	Lab: Introductory Keygen
	Skills
	Takeaways

	Procmon
	Example: Notepad.exe
	How Procmon Aids RE and Cracking
	Call Stacks
	File Operations
	Registry Queries

	Resource Hacker
	Example
	Mini-Lab: Windows Calculator

	Patching
	Patching vs. Key-Genning
	Where to Patch
	NOPs

	Other Debuggers
	OllyDbg
	Immunity
	x86dbg
	WinDbg

	Debugging with Immunity
	Immunity: Assembly
	Immunity: Modules
	Immunity: Strings
	Immunity: Running the Program
	Immunity: Exceptions
	Immunity: REwriting the Program

	Lab: Cracking with Immunity
	Skills
	Takeaways

	Summary

	Chapter 11 Patching and Advanced Tooling
	Patching in 010 Editor
	CodeFusion Patching
	Cheat Engine
	Cheat Engine: Open a Process
	Cheat Engine: View Memory
	Cheat Engine: String References
	Cheat Engine: REwriting Programs
	Cheat Engine: Copying Bytes
	Cheat Engine: Getting Addresses

	Lab: Cracking LaFarge
	Skills
	Takeaways

	IDA Introduction
	IDA: Strings
	IDA: Basic Blocks
	IDA: Functions and Variables
	IDA: Comments
	IDA: Paths

	IDA Patching
	Lab: IDA Logic Flows
	Skills
	Takeaways

	Ghidra
	Lab: Cracking with IDA
	Skills
	Takeaways

	Summary

	Chapter 12 Defense
	Obfuscation
	Evaluating Obfuscation
	Automated Obfuscation
	Name Mangling
	String Encryption
	Control Flow Flattening
	Opaque Predicates
	Instruction Substitution

	Obfuscators
	Defeating Obfuscators

	Lab: Obfuscation
	Skills
	Takeaways

	Anti-Debugging
	IsDebuggerPresent()
	Debug Registers
	RDTSC
	Invalid CloseHandle()
	Directory Scanning
	Offensive Anti-Debugging
	Defeating Anti-Debugging

	Lab: Anti-Debugging
	Skills
	Takeaways

	Summary

	Chapter 13 Advanced Defensive Techniques
	Tamper-Proofing
	Hashing
	Signatures
	Watermark
	Guards

	Packing
	How Packers Work
	Is This a Strong Protection?
	Defeating Packing
	PEiD

	Lab: Detecting and Unpacking
	Skills
	Takeaways

	Virtualization
	How Code Virtualization Works
	Layered Virtualization
	Issues with Virtualization
	Is This a Strong Protection?
	Defeating Virtualization

	Cryptors/Decryptors
	Is This a Useful Protection?
	Defeating Cryptors

	Summary

	Chapter 14 Detection and Prevention
	CRC
	Is This a Strong Protection?

	Code Signing
	How to Code Sign
	How to Verify a Signed Application
	Is Code Signing Effective?
	Code Signing vs. CRC
	Is This a Strong Protection?

	RASP
	Function Hooking
	Risks of RASP
	Is This a Strong Protection?

	Allowlisting
	How Allowlisting Works
	Breaking Name-Based Allowlists
	Breaking Name and Hash-Based Allowlists
	Example: Metasploit

	Is This a Strong Protection?

	Blocklisting
	Is This a Strong Protection?

	Remote Authentication
	Remote Authentication Example
	Is This a Strong Protection?

	Lab: ProcMon
	Takeaways

	Summary

	Chapter 15 Legal
	U.S. Laws Affecting Reverse Engineering
	The Digital Millennium Copyright Act
	Computer Fraud and Abuse Act
	Copyright Act
	Important Court Cases
	Fair Use
	DMCA Research Exception
	Legality

	Summary

	Chapter 16 Advanced Techniques
	Timeless Debugging
	Binary Instrumentation
	Intermediate Representations
	Decompiling
	Automatic Structure Recovery
	Visualization
	Deobfuscation
	Theorem Provers
	Symbolic Analysis

	Summary

	Chapter 17 Bonus Topics
	Stack Smashing
	Shellcode
	Stack Smashing and Stack Protection

	Connecting C and x86
	Using C Functions in x86 Code
	Using x86 Functions in C Code
	_start vs. main()
	Standard Arguments
	Mixing C and Assembly

	Summary

	Conclusion
	Index
	EULA

